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\ Abstract

\
%
The use of microprogramming to improve the performance

of application programs was investigated.///}he application

programs used in the study were from various research labor-
atories at Wright-Patterson Air Force Base, Ohio. “'The usef;
micrpprogrammable Hewlett-Packard (HP) 21MX minicomputer was
used for the investigation.

Two application programs were chosen as candidates for
microprogramming, a wind tunnel stress analysis program and a
laser materials modeling program. The programs were analyzed
to determine where microprogramming should be applied wusing
an activity profile generator program. The microcode for the
programs was implemented, and the speed improvement measure-
ments of the resultant programs were made.

The study further 1looked at the feasibility of auto-
mating the microprogramming tuning process on the HP 21MX
computer. Approaches to automatically selecting program
segments for microprogrammning and automatically synthesizing

the microcode were discussed.
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Applications Directed Microprogramming on a Minicomputer

E System

I. Introduction

Introduction

General purpose computers are by definition designed
to be used for a wide variety of applications, and thus are
very versatile. It 1is because of this versatility, how-
aver, that these computars are inherently ineffecient for
t! many applications. The ideal situation, from a performance

point of view, would be to have a computer which was de-

-
iR RS
S e . .

signed specifically for each application. Since this 1is
not realistic, the user must usually accept the performance
of the general purpose computer. For most applications,
this .3 quite acceptable.

Some applications, however, may have requirements
which exceed the capability of the general purpose com-

puter. The user may then be forced to buy a special pur-

pose machine -- a very expensive solution to the perfor- !
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mance problem. If, however, the wuser's general purpose
machine is user-microprogrammable, another possible solu-
tion exists. The user-microprogrammable computer can often
be "tuned" using microprogramming to meet the specifica-

tions of special application programs. That 1is, special
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instructions can be added to the cowmputer's instruction set

which will more efficiently perform the basic operations or
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"primitives" of the application program. T.G. Rauscher
notes: "The efficiency of solving a particular problem de-
pends primarily on the degree to which the architecture
supports the problem primitives" (Ref. 1:1006).

It 1is this use of microprogramming to improve the
performance of application programs which is the subject of
this thesis investigation. This introductory chapter cov-
ers background information, the specific problem investi-

gated, and the approach taken to solve the problem.

Background

The origin of microprogramming can be traced back to
1951 when M.V. Wilkes (Ref. 2) proposed using "micropro-
grammes" as an alternative to the "ad hoc manner" in which
computer control units were being designed. The technigue
was not widely uased commercially until the mid 1960s when
IBM introduced the microprogrammed version of the
system/360 (Ref. 3). Since then microprogramming has been
widely used in the design of computer control units,

The introduction of a writable control store (WCS),
that is read/write memory used to store microprograms, made
it practical to use microprogramming to improve the per-
formance of application programs. Depending on the appli-
cation, performance can mean such things as speed, accura-
cy, or special data formats (Ref. 4:25). Speed is the
primary performance measure considered here. Properly ap-
plied, microprogramming can increase the speed of a program

2
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considerably. Gains of six to ten times or more are pos-
sible (Ref. 5:98). Because of limited memory available for
microprograms and because of the complexity of the micro-
programming task, it is not possible to completely micro-
program most application progranms. Microprogramming 1is
therefore applied at points 1in the application program
where most of the execution time i3 spent. For a more de-
tailed discussion of microprogramming and how it provides
improvement in program execution time, the reader should

refer to Appendix A. Appendix B contains a glossary of

terms used in this report.

Problem

The problem considered in this thesis investigation is
the use of microprogramming on the user-microprogrammable
Hewlett-Packard (HP) 21MX computer. This machine is used
in several of the 1laboratories at wright-Patterson Air
Force Base (WPAFB) for a variety of specialized applica-
tions. Curr=ntly, little or no use is made of the micro-
programming capabilty of the machine.

Previous work at the Air Force Institute of Technolgy
(AFIT) on this problem was done by John J. Steidle (Ref.
6). Steidle implemented the user-microprogramming capa-
bility on the AFIT Digital Engineering Laboratory (DEL) HP
21IMX and began the study of applying microprogramming to
application programs. He was able to complete one micro-

program -- a bit-reversal routine for a Fast Fourier
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Transform (FFT) program. This thesis effort is essentially

a continuation of his work.

Scope
The major objective of this thesis effort is to pro-
mote the use of user-microprogramming by:

1. Demonstrating its benefits in actual working
application programs.

2. Investigating approaches which will aid other
users in future microprogramming tuning ef-
forts.

The result of this and future efforts will hopefully be
improved program performance and extension of the useful

life of the HP 21MX cowmputer.

Approach
The approach taken in this thesis investigation is
outlined in the following steps:

1. A literature search.

2. 1Identification of existing application pro-
grams which could benefit from microprogram-
ming.

3. Analysis of those programs to determine where
microprogramming should be applied.

4. Design and implementation of the micropro-
grammed routines.

5. Analysis of the resulting programs.

4
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6. Investigation of approaches which would sim-
plify the tuning process.

A literature search was conducted to gain necessary
background and to learn what related work had been done.
The search revealed that research had been done in both
manual (Refs. 1,4-12) and automatic (Refs. 13-19) tech-
niques of architecture tuning.

Identification of candidate programs was accomplished
by contacting HP users on base. An initial list of users
was already available (Ref. 6:Appendix C). Users were in-
terviewed to determine what application programs were
available and which of these would make good candidates for
microprogramming. Source code of selected programs was
then obtained for further analysis.

Analysis of the selected programs was done using an
activity profile generator program (Ref. 6:22). This pro-
gram monitors the execution of an application program, and
generates a table and a histogram showing the relative ecx-
ecution times of the various routines of that program.

The analysis of the programs identified potential
routines for microprogramming. The microroutines were then
designed, coded and substituted back into the original
programs. The rasultant programs were analyzed, and the
execution times were compared with tne execution times of
the original programs.

Based on the experience gained through the above man-
ual tuning process and work of others found in the litera-

5
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ture search, the investigation of approaches to simplify
the process was begun. The goal of this effort was to in-
vestigate the feasibility of completely automating the
process and developing an automatic tuning system for the
AFIT HP 21MX computer. Each step of the process was
studied to determine if it could be automated, and the
availability of software and algorithms to support the

tuning step was examined.

Limitations

This thesis investigation was limited in several areas
because of various factors. The study was confined to ap-
plications of microprogramming on the HP 21MX, although the
concepts could be applied to any user-microprogrammable
computer. The number of application programs tuned was
limited by the number of potential programs identified by
the base users and by the time frame of the thesis effort.
The size of the microprograms was limited by the size of

the WCS on the AFIT machine -- 256 words.

Order of Presentation

This report consists of seven chapters. Chapter I
provides an intoduction and outlines the problem considered
and the approach taken to solve that problem. Chapter IIL
covers the survey of HP users and the two applicaticn pro-
grams found as candidates for microprograimming. The anal-

ysis of the two application programs is described in Chap-

6
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ter IIL. Chapter 1V describes the requirements, design,

implementation, and test ot the first microprogram -- a

matrix multiplication routine wused for stress calculations

in a wind tunnel control program. The requirements, de-

sign, implementation and test of the microcode for the

second candidate program -- a laser materials modeling

program -- is covered in Chapter V. Chapter VI discusses

the feasibility of designing an automated tuning system for

the AFIT HP 21MX computer. Chapter VII presents the re-

sults, conclusions, and recommendations of the thesis in-

vestigation.
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II. Survey of HP Users at Wright-Patterson Air Force

Base

Introduction

In order to identify existing application programs
which might benefit from microproyramming, a survey of HP
users at Wright-Patterson Air Force Base was conducted.
This chapter reports the details of this survey -- the or-
ganizations surveyed, the criteria for choosing candidate
programs, and the candidate programs chosen for further

analysis.

Organizations Surveyed

The survey was conducted through telephone contacts
and personal interviews with HP users whose names appearad
on an existing list (Ref. 6: Appendix C). An updated list
is given in Appendix C. Each user contacted was given a
brief explanation of the microprogramming tuning process
and then asked if their organization had any programs which
might benefit from this process.

Users from eight separate organizations at wright-
Patterson were surveyed. All of the organizations have at
least one HP 21MX computer; one organization has four. The
major uses of the HP 21MX differ widely among organiza-
tions, some of the uses being: sensor modeling, electronic

warfare analysis and modeling, matsrials modeling, instru-
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ment data acquisition and processing, on-line data acqgui-
sition of real-time telemetry data, wind tunnel control,
and random vibration control.

Because of the diverse applications of the HP 21MX,
the application programs of the various organizations have
very little in common at the detailed level. At a more
general level, however, the programs can be divided into
three major categories -- modeling, data acquisition, and

control.

Criteria for Candidate Programs

Because of the large number of application programs
being run on the HP 21MX, some criteria had to be used 1in
selecting programs for further analysis for microprogram-
ming. Meyers (Ref. 20:29) suggests three criteria for de-
termining whether a function should be implemented in mi-
crocode or software: (1) "the function should be small,"”
(2) "the function should be unlikely to change, and" (3)
system performance would suffer from a slower software
implementation of the function." Although Meyers 1is ap-
plying these criteria to the design of cowputer architec-
tures, they are also very applicable to the "tuning" pro-
cess considered here, and thus were used 1in the program
selection process,

The requir=sment that the function be small is neces-
sary for two reasons. Writable control store is very lim-
itad on most user-microprogrammable computers. The AFIT HP

9
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21MX, one of the HP 1000 Series computers, for example, has
]a ) only 256 words. Table I (Ref. 7:15) shows the control
- store options available for the HP 1000 Computer Series.
: Also, microprogramming 1is inherently more difficult than
hl programming in a higher 1level language, because of the
{ lower-level details the programmer must be concerned with,
P such as register and bus transfers, arithmetic logic unit
(ALU) operations, and microinstruction timing. For this
reason microprogrammning should be held to a minimum.

The two reasons for the first criterion also apply to

the second, that "the function should be unlikely to

change." Limited writable control store makes program

growth difficult, if not impossible in many cases. The

\{ complexity of microprogramming makes the modifications much
more expensive,

The third criterion points to the program's need for

performance improvement. This may be the most important of

the three criteria. 1f a user feels the performance of a

N . Lt O . . LA

T
s

program 1is already adequate, there 1is no need to add ex-

2

Ei pense and complexity to it by adding microcode.

E; One additional criterion that should be considered is
;i a program's potential for improvement using microprogram-
i’ ming. This potential is based on the nature of the pro-
Ei grain, A compute-bound program is more likely to be im-
&a proved by microprogramming than an 1/0-bound program. .Y
?! L plotting program that spends the majority of its execution
Ei time waiting for the mechanical plotter would gain nothing
10
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TABLE I
g User Microprogrammability Provisions of HP 1000 Computers
5 HP 1000 Computer Series M E F
j. HP 1000 Wwith 4 I1/0 channels 2105
= Computer
}: Models With 9 I/0 channels 2108 2109 2111
with 14 7/0 channels 2112 | 2113 | 2117
T‘ Control Store Space
- (micro-instructions)
Total control store address space 4096 16384 16384
f‘QQ Space used by base instruction set 1024 1024 2816
Space reserved for HP enhancements 1536 3584 7936
Space reserved for user microprograms| 1536 11776 5632
Control Store Hardware for the User
12945A 256-instruction User Control max. n/a n/a
Store board for user-installed ROMs of 2
13407A 2048-instruction User Control max, max. max.
Store board for user-installed ROMs of 1 of 1 of 1
13197A 1024~-instruction Writable max. max. max.
Control Store board of 2 of 3 of 3

11
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in performance from microprogramming.

Candidate Programs

Applying these four «criteria to programs examined in
the survey, two application programs from two different
organizations were chosen for further analysis -- a wind
tunnel stress control . program and a laser materials model-
ing program. The background and general requirements of
these programs is dicussed here.

Wind Tunnel Stress Control Program. The wind tunnel

stress control program, called STRES, is one of several
subroutines used to control the overall operation of a 9-
inch experimental wind tunnel used by one of the Air Force
Weapons Laboratory (AFWAL) organizations -- AFWAL/FIMN
(Ref. 21). STRES is used to calculate the stresses on
flexible rods or elements in the wind tunnel.

A cross section of the tunnel with the rods 1is shown
in Pigure 1 (Ref. 22:Figure 3). A total of eighteen rods
form the floor and ceiling of the tunnel, nine rods on each
surface. Each of the rods is connected to ten electro-
mechanical jacks, which are used to bend the flexible rods
to a desired shape. Bending each of the rods provides the
tunnel with variable geometry walls, which allows "testing
larger models than previously possible in a comparable
sized conventional tunnel" (Ref. 22:1). Figure 2 (Rref.
22:Figure 2) illustrates the cffect that bending the rods
has on the shape of the tunnel.

12
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The rods are adjusted each time the tunnel is preparad
for a model test. Although the rods are flexible, it is
important that they are not over-stressed or they will be
permanantly distorted. The function of STRES is to prevent
this from happening. STRES receives as one of its input
parameters an array containing the relative distance each
of the ten adjusting jacks has been moved. This informa-
tion is used to calculate the stresses and moments on each
rod. These values are then passed to another routine which
automatically shuts down one or more jacks 1if the maximum
allowable values are exceeded.

Originally STRES and its assoclated subroutines were
written entirely in FORTRAN, but the program was too slow
to allow adjusting of more than one rod at a time. Part of
one routine was rewritten in assembly language, and the
gaian in speed allowed the adjusting of three rods at a
time. This new routine was called, quite appropriately,
SPEED.

The rod adjustment process took about 5 minutes. 1t
was hoped that by microprogramming parts of STRES and
SPEED, the stress calculations could be made fast encugh to
allow the simultaneous adjustment of more than three rods
-- possibly two or three times as many -- and thus reduce
the total adjustment time. The ultimate goal was to be
able to adjust all eighteen rods at once! This would allow
real-time adjustments during a test.

The stress calculation function met all of the program

15
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selection «criteria, and was considered a prime candidate
for microprogramming. More conventional soeed-up tech-
niques such as reverting to assembly laaguage had been
tried. Microprogramming was a logical next step.

Laser Materials Modeling Program. The laser mate-

rials modeling program is a program which was developed by
personnel at AFWAL/MLPJ (Ref. 23) to model the optical
characteristics of laser materials. This program is used
to calculate the real and imaginary parts of refractive
index, an important measure of laser materials. This mea-

sure is given by the following eguations (Refs. 23,

24:1327):

where:

n = real part of the refractive index
(dimensionless)

< = 1lmaginary part of the refractive index
(dimensionless)

+ o = short-wavelength dielectric constant
(dimensionless)

Gooo= strength of resonance (dimensionless)

v, o= frequency of resonance (em™ 1)

v = radiation frequency (en™H)

y. = damping factor (dimensionless)

16
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x = a weighting factor (dimensionless)
v, = plasma fraquency (em™ 1)
v, = relaxation frequency (en 1)

The HP 21MX at this laihoratory is equipped with a po-
tentiometer board consisting of 32 potentiometers. Each
potentiometer of the board can be adjusted to supply dif-
ferent voltage levels to analog-to-digital (A/D) convert-
ers. The A/D converters are connected to the HP 21MX,
nroviding digitized inputs of the potentiomet=r scttings.
In the modeling program the potentiometers are used o
provide the trial input parameters for the above eqguations.
Values for n and k can then be calculated.

Another important measure of laser materials 1is re-
flectivity. The reflectivity R at normal incidence 1is

given by the following egquation (Ref. 24:1327):

(n-1)<tk?

(ni1)24y?

(n,k, and R are dimensionless)

Once n and k are known, R can be calculated and displayed
on an oscilloscove as a function of wavelength.

An experimental method of obtaining a plot of reflec-
tivity 1is by using a spectrometer to measure a laser mate-
rial sample. The coordinate points for this measarad plot
can then be input to the modeling program and displayed
along with the calculated waveform, An example of what a
display might look like 1s shown in Figure 3., By adjusting
the potentiometers, the calculated plot can be adjusted to

17
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Figure 3. Reflectivity of a Laser Material Sample.
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closely match the measured waveform and the corresponding

]

refra~.tive index spectra can be calculated,. Thus, the
program functions as a curve-fitting tool.

It should be made clear that there are other comput-
erized techniques for calculating the refractive index, and
that this technique 1is not meant to replace them. This
experimental method has three objectives (Ref. 23): (1) to
calculate the refractive index of a sample material, (2) to
give a researcher a "feel" for the effects the different
parameters have on the spectra, and (3) to possibly aid in
the synthesis of new laser materials.

Although this modeling program had not yet Dbeen tested
at the time of the survey, it was anticipatad that the
FORTRAN routine used to calculate the refractive index
equations would not be fast enough to provide an acceptable
oscilloscope display. This was the motivation behind the
application of microprogramming to this routine.

The routine met all of the program selection criteria.
The function was small. The refractive index eguations
ware well established, so there was 1little possibility of
modification. The function should execute faster ian mi-
crocode. Since the program had not yet been tested, there
was some question as to whether or not the function would
execute fast enough in FORTRAN. The designer of the pro-
gram had had expevrience with similar FORTRAN routines run-
ning on the HP 21MX, and felt confident that this routine
would not be fast enough to provide an acceptable oscillo-

19
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scope display if done in FORTRAN. Later tests confirmed
R that he was correct. Cosidering these factors, the program

was a good candidate for microprogramming.

Conclusions

The results of this survey were somewhat unexpected,
since only two application programs were selected as can-
:.; didates for microprogramming. Several reasons for this can
r:‘ be given:

E (1) Many programs did not meet the selection criteria.
(2) A Control Data Corporation (CDC) system is avail-
= able to most organizations at Wright-Patterson Air

Force Base and can be used for programs which ex-

- o ceed the capability of the HP computer.
I

- (3) One of the organizations (Ref. 25) had potential

ﬁ} programs, but administrative control of the conm-

g puters was being transferred to another organiza-
pf tion.

-

% . . - .

{. (4) One pe~vson interviewed (Ref. 26) had several ideas
3

g for microprogramming applications, but the pro-

|
%- grams had either not been written, or were running
f¢ on the CDC system.

E; (5) Some persons may have been hesitant to involve

e

b themselves or their programs in this project.

- Although only two application programs were identi-
%j fied, the survey was considered successful. The two pro-
q -

£ . grams were "“real" operational programs and were good can-

N 20
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Lu of the HP users was hopefully stimulated
} microprogramuing in future applications.
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III. Analysis of Candidate Programs

Introduction

As stated in the first chapter, it is not possible or
even desirable to completely microprogram most application
programs, because of 1limited writable control store and the
complexity of the microprogramming task. Fortunately, mi-
crocoding an entire program is not necessary to increase
its speed. One study of FORTRAN programs (Ref. 28) has
shown that more than 80 per cent of the total exacution
time of a program is concentrated in at most four to five
per cent of the instructions. Careful analysis of a pro-
gram can reveal these areas of high concentration.

This chapter covers some of the analysis techaniques
and the application of one these techaniques to the two mi-
croprogramming candidat=s -- the wind tunnel stress program

and the laser materials modeling program.

Analysis Techniques

Several techniques are available for determining wher2
most of the execution time is spent in a program (Ref.
4:146):

l) Static instruction analysis
2) Timing calls

3) Logic analy:zer

22
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4) Activity profile generator

Static instruction analysis involves the addition of
the execution times of individual instructions in a progran
to determine the total execution times of the various seg-
ments of the program. This method can provide good results
if the execution is not data-dependent. Detailed knowledgye
of the individual instruction execution times is requicrad,
however, and the process is very tedious if done manually.

Timing calls to the system c¢lock can be used to de-
termine the elapsed time between the beginning and end of a
program segment. This technique requires a high-resolution
system clock. #rroneous rasults may be obtained in a mul-
titasking system. Also, there is much guesswork involved
in the placement of the timing calls within the program.

A logic analyzer can be used to monitor memory acces-
ses. If the absolute addresses of the program segmeats are
known, the logic analyzer can be programmed to monitor
those addresses, and the frequency of a segment's execution
can be determined. This is an good technigue, because it
gives very precise measurements without any interference
with the operation of the computer. It does requirs the
added hardware of the logic analyzer, and like the timing
call technique, involves much guesswork in determining the
program addresses to monitor.

The activity profile generator is a program which ruas
in a multitasking system along with the program under test.
The profile gencrator uses an external interrupt, such as

23
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the system clock, to interrupt the program under test, and
the point of interrruption is recorded. These recorded
points of interruption can then be used to generate a table
or histogram of the program's activity, showing immediately
the most active segments of the program. This technique
has the advantage of easy implewmentation on most systems.
1t does 1introduce some overhead, however, because of the
frequent interruption of the program under test, but the
results of the profile generation are not affected. Also,
because the profile generator runs in a multitasking sys-

tem, erroneous results may be obtained as in the timing

call method. This problem can be solved by the correct

zi setting of program 2xecution priorities.

;f R One additional technique that has been used (Refs. 17,
?l . 29) is a microprogrammed version of the activity profile
E‘ generator. This technique requires modifications to the
i. microprogrammed instruction fetch routine to gather the
F! statistics on instructions as they are fetched from memory

W
it

for execution. Since the fetch routine '“"sees" each in-

struction, a detailed execution profile can be made. The

4

detail can be down to the number of times each program in-

T TN ey
\ . .

struction is executed, if desired. some overhead 1is in-

troduced, since the instruction fetch time is increased.

F
E. This technigue is difficult to implement on most commercial
: machines, since it requires modification of the instruction
; fetch routine in control store ROM. Also, some provision
’! i is needed for turning the profile off under normal opera-
24
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tion of the machine.

Activity Profile Generator Program

Of the analysis techniques discussed, the activity
profile generator program was chosen for this study.
Static instruction analysis was ruled out becausce it would
have had to be done manually. The timing call technique
would have involved too much guesswork, especially in the
unfamiliar application programs being analyzed. A logic
analyzer was not available, so was not seriously consid-
ered. Modification of the 1instruction fetch routine on a
commercial machine is something which should be done by the
manufacturer rather than the user. Because of these rea-
sons, the activity profile generator program was considered
the best choice. Also, one such program called ACTV was
available, and had successfully been used before (Ref.
6:24).

A listing of the program ACTV and its two subroutines
is given in Appendix D. The subroutine called 1IRGET wa:s
added to the original program to allow ACTV to run on
AFIT's RTE-III (Real-Time Executive-III) operating system,
This routine 1is available as a system library routine on
RTE-IV systems. Instructions for running ACTV under RTE-
ITI are given in Appendix E.

ACTV monitors a program's activity by periodically
interrupting the program, using the systam clock as the
source of the interrupt. The interrupt rate in increiments

25
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of ten milliseconds is interactively input by the user.
The user also provides an upper and lower bound on the
memory addresses of interest based on the 1load address of
the progranm. This area of interest is divided into 50 in-
tervals, and a counter is provided for each interval in the
form of an array. Two additional counters are used -- one
for addresses below the area of interest and one for ad-
dresses above. The address at which the program is sus-
pended at the time of interruption determines which counter
is incremented. The number of counts or "hits" in each
address interval can then be printed in the form of a table
and a histogram providing the activity profile for the

programn,

Wind Tunnel Stress Program Analysis

The analysis of the wind tunnel stress calculation
program STRES and its subroutine SPEED was performed using
the profile data from several cowaputer runs of ACTV. In
order to run STRES on the AFIT HP system, a special test
driver program called SDRVR was obtained from AFWAL/FIMN.
This program provided the needed input parameters to STRES
which normally originate from special hardware of the wind
tunnel control system. For the analysis, SDRVR was used as
the calling program for STRES, which in turn called SPEED.
Neither STRES nor SPEED were modified for the analysis.
Listings for the three programs are provided in Appendix F.

Tables II, IILl, and IV show the resulting activity

26
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profile tables for three of the ACIV runs. ACIV also out-
puts histograms corresponding to the tables, but these werez
found to be of little value for the analysis, and are not
shown. Table V is a load map showing the absolute mewmory
addresses of SDRVR, STRES, and SPEED. The addresses froin
the load map are used to correlate the address intervals on
the ACTV tables to the programs.

The first ACTV run looked at the memory addresses from
40531 (all addresses in octal) to 43126, which included
SDRVR, STRES, and SPEED. Table II shows that 10 of the 14
total "hits" or 71 per cent of the activity occurrad in
SPEED.

The next run looked at addresses 42604 to 43126, the
range of SPEED. Table III shows that 8 of the 10 "hits" in
SPEED occurred in the address range of 42666 to 42705.

To further "home" in on the "hot" spot, a third run
was made looking at the interval from 42661 to 43020. Ta-
ble IV shows the 8 "hits" occurred in the range of 42671 to
42703 or locations 65 to 77 of SPEED.

These locations correspond very closely to the range
of LOOPlL in SPEED. Wwith 80 per cent of the activity of
SPEED occurring in LOOPl, the obvious conclusion to be
drawn is that any microprogramming applied to SPEED should

include the LOOPl program segment.

Laser Materials Modeling Program Analysis

The analysis of the laser materials modeling program

27
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Load

coMm 40002
SDRVR 40531
STRES 42111
SPEED 42604

..MAP 43127
CLRIO 43223

ENTRY POINTS

TABLE V

Map for SDRVR, STRES, and SPEED

40530
42110
42603
43126

43222 751101 24998-16001
43231 750701 24998-16001

*SDRVR 41673
*.DLD 104200
*.DST 104400
*..MAP 43127
*EXEC 12446
*CLRIO 43223
*STRES 42244
*,FMP 105040
*.ENTR 37201
*FLOAT 105120
*SPEED 42611
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subroutine called CALC followed the scheme that was used in
the analysis of the wind tunnel program. A special driver
program called CDRVR was required to provide the needed
input parameters for the routine CALC. Listings Eor the
two FORTRAN programs, CDRVR and CALC, are in Appendix I.

As with the previous program, three activity profiles
were ruh, Tables VI, VII, and VIII show the resulting ac-
tivity profile tables, and Table IX shows the load map for
CDRVR and CALC.

The first run included both CDRVR and CALC in the area
of interest, from location 40002 to 40651. Table VI shows
a large concentration of "pits" in the address range from
40233 to 40354, somewhere in the middle of CALC. The num-

ber of "hits" in this area is 33 of the total 48, or 69 per

cent,
The seccond run included CALC only from location 40142

to 40651. Table VII shows two areas of relatively high
a "hit" concentration. One large area from 40266 to 40347
-
- contains 23 "hits"™ or 48 per cent of the total. The other
%
i' smaller area from 40223 to 40250 has 8 "hits" or 17 per
4
ij cent of the total.
Ff The third run covered these two areas more closely
i from 40214 to 40365. Table VIII still shows the two areas
K
= of concentration, but within those areas, the "hits" are
- fairly evenly distributed. One exception is the intecrval
b
i from 40332 to 40335, which has 6 "hits", a relatively high
¢ -
- - concentration. A mixed FORTRAN/assembly listing shows that
& 35
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CDRVR
CALC

ERRO
SQORT
.0OPSY
CLRIO
.. FCM
REIO
ERO. E
.PWR2
.DFER

40002
40142

40652
40761
41110
41150
41157
41174
41277
41300
41333

ENTRY POINTS

*CDRVR
*EXEC
*CLRIO
*CALC
* FMP
* FDV
*, FAD
* FSB
*, FCM
* MPY
* DLD
* DST
* ENTR
*SQRT
*FLOAT
*ERRO
*REIO
*ERO. E
* OPSY
*, PWR2
* ZRNT
*, ZPRV
* DFER
*SLIBR
*SLIBX

400
124

TABLE

IX

Load Map for CDRVR and CALC

40141
40651

40760
41107
41147
41156
41173
41276
41277
41332
41404

76
46

41150
40147
105040
105060
105000
105020
41157
100200
104200
104400
37201
40771
105120
40652
41200
41277
41110
41300
02001
02001
41333
12665
13463

750701
751101
750701
750701
750701
92001-16
750701
750701
750701
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24998-16001
24998-16001
24998-16001
24998-16001
24998-16001
005 741120
24998-16001
24998-16001
24998-16001
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this interval immediately follows a floating point divide
instruction, which is the slowest of all the floating point
instructions. This accounts for the high concentration at
that point,.

Close examination of the <CALC 1listing shows that all
the "hits" in the specified range in Table VIII occur in
the "DO" loop of the program. Furthermore, the "hits" are
concentrated in the area of the loop where many floating
point operations take place. The microprogramming effort
in CALC should be concentrated on this 1loop, microcoding

the entire loop if possible.

Summary

This chapter covered the analysis techniques for
finding the time-consuming areas of a higher level or as-
sembly language program, Two programs were analyzed in
detail wusing an activity profile generator progran. The
first progyram, the wind tunnel stress routine, showed a
high activity concentration in a very small loop. The
second program, the laser materials modeling routine, had
its area of high activity also in a loon. The loop of the
second program, however, was imuch larger, containing sev-
eral lengthy FORTRAN statements. Both of the loops of the

Ewo programs could be microcoded.

43

T Y P P S P P L B - - : . e et e B veis, AmesTer SorteaensimnBerssm oW st s rn B otuer e rierhn e acrs reai B B o re | eCLen e




. W T W Twe oW T T e LR T s T s T R e ooy oo, o T T e
T T - - R o - o

IV. Requirements, Design, Implementation and Test of a

Microprogram for the Wind Tunnel Control Program

Introduction

The previous chapter covered the analysis of the
stress calculation routine (STRES) for the wind tunnel
control program. This analysis showed that about 80 per
cent of the program activity in the assembly language sub-
routine of STRES called SPEED occurred in one loop segment
of SPEED. This chapter covers the detailed requirements,
design, implementation and test of a microprogram called

LOADS to replace this loop segment in SPEED.

LOADS Requirements

LOADS is the microprogram designed to replace the loop
segment labeled LOOP2 in SPEED. LOOPl is actually the loop

in which wmost of the activity was found to occur, but it is

a
N
A
~
D
L
a
o
‘
,: B
o
-
a ¢

nested within LOOP2. Because of this relationship between

b2t Akl
LA
.

the two loops, it was decided to include LOOP2 in the de-

i

sign of LOADS.

First and second level data flow diagrams (D¥FDs) (Ref.

30:Chapt. 4) of SPEED are given in Figure 4 to show the

a2 AR S 0l £ 450 o St 4
Y v Ly

relationship of LOOP2 to the rest of SPEED. As shown in

the diagrams, SPEED performs three major functions -- com-

hagam i A0e Bar acher Ty
RN .

putation of loads (forces), moments, and stresses. LOOP2,

F S along with its inner 1loop labeled LOOPl, performs the load
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o Figure 4. Level 1 and 2 DFDs for Subroutine SPEED
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Figure 5. DFD for LOADS Microprogram
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computation function. The parpose of this function is to
calculate the loads on the individual flexible rods of the
wind tunnel, Calculation of the loads 1is an interim cal-
culation to computing the mowents and stresses on each rod,
as shown in the second level DFD of Figure 4. The calcu-
lation of the loads consists of a simple matrix multipli-
cation.

Matrix multiplication 1is defined as follows (Ref.
31:343): Given A=(ai.), an m x n matrix and Bn(bij), an

J

n x p matrix. Then the product AB is a matrix C=(cij)
wherae:

s
and the matrix C is of order m x p. The two matrices in-

volved in the load calculation are called DDFL and YZ'T.

DDFL is a 13 by 13 matrix, which represents the in-

verse matrix of the defl:ctions of a single wind tunnel rod

due to a unit load applied to the rod at one point. There

) il e e 002

are 13 Jjacks attached to each rod, giving 13 deflection

points and 13 points to apply a unit load.

LA s £

YZT 1is a 14 by 1 matrix which represents the deflec-

tions in 1inches from the neutral position of the 13 jacks

VYT Y

attached to each rod. VYZT(1l) represents the poiant at which

v

a rod is attached to the tunnel wall, and thus always has a

deflection of zero. VY4T(2) through Y4T(4) are the deflec-

——
r 4 .

tions of the manual jacks used to position each cud.

Cul s MR SIS |
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YZT(5) through YzT(14) are the deflections of the ten
gﬂ electric jacks used for the same purpose. The values for
‘ the electric jack deflections are actually the periodic
readings from potentiometers attached to each rod (one po-
ﬁ! tentiometer per rod). The first element of Y4T, YZT(1l), is
:: not used in the matrix multiplaction. This makes the YaT
: matrix effectively a 13 by 1 matrix, satisfying the dimen-
i‘ sion requirements for matrix multiplication.

The result of the multiplication of DDFL and YZT is a
13 by 1 matrix called LOAD. LOAD is actually a 14 by 1
%ﬁ matrix like YZT with the first element set to zero, and the
remaining 13 elements are the result of the matrix multi-

plication. The reason the YZT and LOAD matrices have an

'ir; extra element is because of requirements in other routines
of the wind tunnel control proygram. For the purpose of the
matrix multiplication, they are 13 by 1 matrices and will
be referred to as such.

The data flow for the matrix multiplication of DDFL
and Y2T 1is shown 1in the DFD of Figure 5. This DFD 1is a
further breakdown of the "COMPUTE GOADBS" "bubble" of the

DFD of Figure 4. The data flow here is very simple. Ele-

ments of DDFL and Y%T are obtained from their respective

k! matrices. The two elements are multiplied, and the product
El is added to the appropriate LOAD element. The control in-
E; volved in this process cannot be shown in a DFD, but is
;‘ .7 described in the following structured English (Ref.
4

30:Chapt. 6) raquirements specification of the DDFL and Y7T
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matrix multiplication routine:

REPEAT UNTIL NO MORE ROWS IN THE DDFL MATRIX
SET NEXT ELEMENT OF LOAD MATRIX T0O 0
REPEAT UNTIL NO MORE COLUMNS IN THE ODFL
MATRIX
MULTIPLY NEXT DDFL AND YZT ELEMENTS
ADD THE PRODUCT TO THE CUORRENT LOAD
ELEMENT
POINT TO THE NEXT YZT ELEMENT
POINT TO THE NEXT DDFL COLUMN
END
POINT TO THE NEXT LOAD ELEMENT
POINT TO THE NEXT DDFL ROW
END
The matrix multiplication consists of two loops, one within
the other, as shown in the above structured English speci-
fication. The inner loop corresponds to LOOPl in SPEED,

and the outer loop corresponds to LOOP2Z.

Design of LOADS

The basic design of the LOADS microprogram is shown in
Figure 6 in the form of a structure chart (Ref. 30:Chapt.
7). This chart 1is the result of transform analysis (Ref.
30:Chapt. 9), which is a design technigque that builds a
system around the concept of data transformation. In the
case of LOADS, the data elements of the DDFL and Y4T ma-
trices are transformed into an element of the LOAD matrix.
This transformation is shown in the DFD of LOOPl, from
which the structure chart is drawn. The reader should note
that the data names on the structure chart are for design
purposes only and do not actually exist in the wmicrocode.

Data at the micro-level exists in vregisters, and the ap-
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plicable registers wused for temporary storage are shown in
parenthesis below the corresponding data name.

1f LOADS was to be implementel in a higher level lan-
guage, the design of the routine would essentially be done.
It is a simple process to code a FORTRAN or PASCAL program
from the above structured English wusing the modular design
of the structure chart. TImplementing the routine in wi-
crocode, however, requires the design to go to an even
lower level. The following algorithmic steps take the de-
sign to a sutficiently low level to write the microcode:

1. Read calling parameters =-- addresses for DDFL,
YZT, and LOAD matrices -- from memory ar 1 store
into their respective scratch registers.
2. Store an outer loop count of 13 into a loop
counter register.
. 3. Store an inner loop count of 13 into a loop
A counter register.
4, Set the current LOAD matrix element to zero.
5. Read the current DDFL matrix element from memory
into the A/B registers.
6. Read the current YZT matrix element from memory.
7. Call the floating point multiply routine.
8. Read the current LOAD matrix element from memory.
9., Call the floating point add routine.
10. Store the result into the LOAD matrix element.
11. 1Increment the DDFL address register.
12, 1Increment the YZT address register.

;  13. Decrement the inner loop counter reygister.
! 14. If the counter does not equal zero, go back to
[ step 5.

15. 1Increment the LOAD address register,

l6. Decrement the outer loop counter register.

. 17. 1f the counter does not equal zero, go back to
- step 4.

¢ 18. Return to the calling assembly language routine.

" lmplementation of LOADS

The process of implemeniing the design of LOADS in

1 ' microcode is straightforward. Use of the HP microassembler
b
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(Ref. 32:5~1) makes the coding very similar to coding in
assewbly language. The resultant microprogram is listed in
Appendix G along with the modified version of SPEED called
MSPED, required to invoke the microprogram,

Some of the limitations of the HP architecture have a
significant effect on the microcode. Because only one
regyister 1s available for subroutine return addresses 1in
the HP 21MX M-Series, subroutine calls cannot be made f{rom
other subroutines without losing the original return ad-
dress. This 1is a significant problem when using control
store ROM routines such as the floating point multiply and
add routines required by LOADS. These routines call other
ROM routines, so they cannot be wused directly. One way
around this problem 1is to duplicate the routines in WCS and
“jump" directly to and from these routines. Duplicating
the routines 1is no problem as all the ROM routines are
documented (Ref. 32:Appendix E), but they do use much
valuable WCS space.

Another problem with using the ROM rouutines is that
they use many of the available scratch registers. For ex-
ainple, the floating add and multiply routines and their
associated subroutines use ten of the twelve available
scratch registers. Scratch registers are very important
since data cannot be stored in WCS in the HP 21MX. With
the routines in WCS, the register usage can be reorganized

somewhat. Doing this in LOADS freed two more registers.

51
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Testing

The plan for testing the LOADS microprogram consisted
of two major phases -- a module test and a system test,
The module test was conducted on the AFIT HP system using
the special driver program SDRVR to drive LOADS (via STRES
and SPEED). The purpose of this test phase was to show
that LOADS would produce the same output as the assembly
langiage code seyment replaced by LOADS. The system test
was run on the AFWAL wind tunnel control computer. The
purpose of this test phase was to show that the LOADS mi-
croprogram would load and execute correctly on the systen
faor which it was designed.

Module Test. The module test plan consisted of two

parts: (1) verification of the program output, and (2) de-
termination of the speed improvement of the microprogram.
Imbedded in the data and assignment statements of SDRVR
were known inputs for the subroutine STRES, which would
produce known stress and moment calculation outputs. The
goal of this part of the module test was to duplicate those
outputs using the microprogrammed version of the program.
HP's Micro Debug Editor (MDE) (Ref. 32:5-21) was used for
loading the TLOADS microprogram into WCS, and for debugging
the microprogram. Debugging consisted of setting break-
points within the microprogram and analyzing register con-
tants when the breakpoints were reached.

Determination of the speed improvement of STRES and
SPEED through the use of the LOADS microprogram was accom-

c
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o . @; plished through executive <calls to read the system clock.
o It was necessary to call STRES (and therefore SPEED) 100
times from a loop in order to get accurate measurements.
The timing tests showed that the microprogrammed version of
SPEED (using LOADS) was 36 per cent faster than the orig-
inal version. Since the loop replaced by LOADS represented
80 per cent of the total execution time of SPEED, LOADS was
actually 45 per cent faster than the loop it replaced. The

speed increase in SPEED made its calling program STRES 31

per cent faster.

The 45 per cent speed increase (almost two times as

o fast) 1s somewhat less than the gains of six to ten times
(Ref. 5:98) or two to twenty times (Ref. 9:49) reported in

the literature. Close analysis of the assembly language

‘

for the 1loop explains the difference. Totaling the in-

struction times for floating point and non-floating point

instructions shows that 46 per cent of the loop's execution
time is spent in the two floating point instructions.
Since the microcoded version of the program uses these same
floating point routines, no speed improvement can be made
to 46 per cent of the loop, and the best possible speed

improvement to the 1loop is 54 per cent. A 45 per cent

0 S Aot Jan SBN Jma Aot e

speed increase is therefore, not only reasonable, but quits
good.
No major problems were encountered in the module test,
r! g although several small problems were encountared. One
% problem was a logic error in the loop structure of LOADS,
53
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wnich made it attempt to write to main memory beyond the

1
9
4
A
3! bounds of the driver progranm. This situation caused a
5 system memory protect error detected by the special memory
- protect hardware on the AFIT system. This optional hard-
i! ware feature showed 1its usefulness 1in protecting wmewory

;% from an untested microprogram. As one of the HP manuals
r warns, "execution of an unproven microprogram can have un-
1' predictable and undesirable results, including the de-
Ei struction of the system" (Ref. 32:5-16). Once the logic

- error of LOADS was corrected, the program produced the

r‘ correct output, and the module test was successful.

(-

L System Test. The system test of LOADS consisted of

! the same two steps as the module test -- output verifica-

iir& tion and speed improvement. In this test, however, the
inputs to the program were froim the operational wind tunnel
control system hardware, and the microprogram was driven by
the operational software, Also, the speed improvement

measurewent here was concerned with the number of addi-

tional rods of the wind tunnel that could be driven.

! Two problems were encountered in the system test. One

Laa o i ul SRS b g4 Dt

P

problem was 1loading the microprogram into the WCS of the

wind tunnel computer, and the other was executing the mi-

! croprogram after it was loaded.

g Loading the microprogram was a probloem because of the
=

- difference in operating systems of the AFIT and wind tunnel
.

»‘ 7 machines, The AFIT system uses a real-time executive sys-
3 .

£ tem, RTE-III, and the wind tunnel system uses an older disk
- 54
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operating system, DOS-II[. Microprogramming support soft-
ware was available for the DOS-III system, but had not been
procurr=d for the wind tunnel machine. The problem was
solved by writing a special WCS loader program in assembly
language using the I/O instruction sequences given in the
WCS manual (Ref. 33:3-1). The 1listing for this program
called WCSLD is in Appendix H. TInitial attempts to run
WCSLD on  the wind tunnel machine failed. The problem was
traced to a bad WCS board, and the microprogram was suc-
cassfully loaded to a new board. WCSLD will not run on an
RTE system with the memory protect option installed because
of the direct 1/0 instructions used.

The next problem occurred in executing the LOADS wi-
croprogram after it had been loaded. The program seemed to
work, but zero values were raturned for the stress calcu-
lations. This indicated that the microprogram was not be-
ing iavoked by the assembly language instruction in SPEED.
This problem was traced to an improper combination of ad-
dress jump2r wires on the WCS board. Removal of two  jumper
wires fixed this problem, and the program ran successfally.

The speed improvement measurement was made by inter-
actively 1increasing the number of concurrent rod adjust-
ments, and monitoring the adjustment process on a special
light panel. The light panel readily indicated when the
program bogged down because of too many concurrent adjust-
ments., The test showed hat four rods could be adjusted
reliably using the wmicroprogrammed version of the proyrawm,
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;l }:4i The o013 program could only handle three reliably. It was
E felt that the microprogrammed version was probably close to

ﬁf five rods, but this could not be validated.

Summary

This chapter covered the requirements, design, imple-
mentation, and testing of a microprogram called LOADS, de-
signed for use in the wind tunnel control program. The
application of the microprogram showed a 31 per cent speed
improvement in the stress calculation routine of the con-
trol program. This improvement resulted 1in a 33 per cent
operational improvement of the rod adjustment process of
the tunnel, by increasing the capability from three to four

) concurrent rod adjustments. The loading and execution of

LOADS on a DOS~III system showed that microprograms can be

run on this system without microprogramming software sup-

port.
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V. Requirements, Design, Implementation and Test of a

Microprogram for the Laser Materials Model Program

Introduction

As discussed in Chapter 1II, the laser materials mod-
eling program is used to calculate the real and imaginary
parts of refractive index, an important measure of laser
materials. Chapter III covered the analysis of the routine
called CALC which performs this refractive index calcula-
tion. The analysis showed that microprogramming could be
appliad to the one loop in CALC. This chapter covers the
requirements, design, implementation and test of a micro-

program called MCALC to replace this loop in CALC.

MCALC Requirements
The real and imaginary parts of the refractive index
are given by the following equations:
, _ vi-v? V2
n’-k2=¢,4 4mps Vi ~ - X ——
(vi-v2)24yty2y? vZtu?
. 1 1 1 i
i
2
Y ViV VLV
nk= 2ﬂp;v§ s X ——
L4 2,2 2.,2,2 24.,°
- tvs
, (\),L v )1\Lv]v v(v vl)
1
These are the same two equations which were given in the
CALC requirsments in Chapter 11. The reader may wish to
- refer back to that chapter for parameter descriptions and
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dimensions, although they are not needed for the discussion
here. CALC receives as inputs all the parameters requirsad
to evaluate the two eguations. Once evaluated, the equa-
tions can be solved simultaneously for n and k, the real
and imaginary parts of refractive index.

Tl.e data flow for CALC is shown in the 1level 1,2, and

3 DFDs in Figure 7. Data flow name definitions are given
in Table X. The first level gives the overall function of
CALC -- to compute n and k. Level 2 divides this function

into the two major tasks of (1) evaluating the two egqua-
tions and (2) solving these two equations simultaneously.
Level 3 further divides the first task into four subtasks.
The second task of solving the equations is of no further
interest here, since this task is not to be microcoded, and
a level 3 diagram is not given.

The level 3 diagram of the equation evaluation task,
howaver, is of particular interest since it provides the
basis for the MCALC microprogram. As noted before, this
diagram divides the equation evaluation task into Ffour
subtasks. The requirement for MCALC is to perform the
summation part of the equation evaluation as shown in
"bubble" 1.2. This "bubble" then becomes the first level
of the MCALC DFD shown in Figures 8 and 9.

The first level of the MCALC DFD shows three inputs --
F, B, and F2. These inputs consist of all the equation
parameters required for the evaluation of the summation
parts of the two equations, One additional input to MCALC
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Figure 9.

Level 3 DFDs for MCALC Microprogram
(Level S of CALC)
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which cannot be shown on a DFD is the upper 1limit of the
summation. This variable, called JJ 1in CALC, can have a
value between one and eight and serves as the loop count
for MCALC. The reason JJ cannot be shown on a DFD is bhe-
cause it is a control variable rather than a data variable.
The two outputs of MCALC, C5 and C6, are the evaluatad
summations in the n2—-k2 and 2nk equations respectively.

The second level of the DFD divides the summation
computation into four intermediate cowputations, computa-
tions Cl through C4, and the two final computations of C5
and C6. All of the variable names used so far in the DFDs
are identical to those wused in the original FORTRAN loop
shown 1in the 1listing of CALC given in Appendix 1. De-
scriptions of these variables describing their relation-
ships to the original equations are given in Table X.

The third level of the DFD gives further details of
the computations of Cl through C6. Many of the data flow
names used here are for the purpose of the DFD only and are
not found in CALC or MCALC. These are also described in

Table X.

Design of MCALC

The Dbasic design of MCALC 1is shown in the structure
chart of Figure 10. Like the wind tunnel microprogram
LOADS, MCALC was designed using transform analysis of the
DFDs. The inputs B, F, and F2 are transformed into inter-
mediate calculations Cl1 through C4, cl, C3, and C4 are
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then transformed into C5 and C6, the two outputs of MCALC.

Figure 11 consists of six structure charts which are the

result of second-level factoring (Ref. 30:180) or further

refinement of the structure chart of Figure 10. These six

structure charts show the calculations of Cl through C6.

As was pointed out in the previous chapter, the variable

names used in the structure chart do not actually exist

the microcode, since all data or data addresses reside in

registers or main memory. Registers which are associated

with the variables are shown in parenthesis below the

variable names.

To complete the design of MCALC, detailed algorithmic

(register transfer 1language, pseudo English) steps are

written using the structure of the structure charts. These

steps are shown below:

1. Initialization
a. Read calling parameters from registers/memory.
b. Save parameters in appropriate registers:
X <-- B address, Y <-- JJ (loop count)
S <-- TMPl address, S8 <-- TMP2 address
S§12 <~- TMP3 address
2. Calculate Cl. CIl=GAMMA.NU(I)*F
a. Read GAMMA.NU element from B array into A/B.
b. Get F address from parameter list and put into
S3.
c. Call FMPY (Floating Point Multiply).
d. Save Cl in TMP1.
3. Calculate C2. C2=NU(I)*NU(I)
a. Read NU e¢lement from B array into A/B.
b. Put NU address into S3.
c. Call FMPY.
d. Save C2 in TMP2.
4. Calculate C3. C(C3=C2-F2
a. Get F2 address from parameter list and put into
s3.
b. Call FSUB (Floating Subtract). (C2 still in
A/B).
c. Save C3 in TMP3.
5. Calculate C4. C4=(RHO(I)*C2)/(C3*C3+C1l*Cl)
67
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Read C2 from TMP2 into A/B.
Put RHO element address into S83.
Call FMPY.
Save result (RHO.C2) in TMP2.
Read C3 from TMP3 into A/B.
Put C3 (TMP3) address into S3.
Call FMPY.
Save C3*C3 temporarily into ClC3 location.
Read Cl froin TMPl into A/B.
Put Cl (IMPl) address into S3.
Call FMPY.
. Put C3*C3 (cl.c3) address into S3.
m. Call FADD (Floating Add).
n. Save C3*C3+Cl*Cl in Cl.C3.
0. Read RHO.C2 from TMP2 into A/B.
p. Call FDV (Floating Divide).
g. Save resulting C4 in TMP2.
6. Calculate C5. C5=C5+C3*C4
a. Put C3 (TMP3) address into S3.
b. Read C4 from TMP2 into A/B.

HAW T O AL TR

c. Call FMPY.

d. Read C5 address into S3.

e. Call FADD.

f. Save new C5 back in C5 location.

7. Calculate C6. C6=C6+Cl*C4

Read Cl from TMPl into A/B.

. bPut C4 (rMP2) address into S3.

Call FMPY.

Read C6 address into S3.

. Call FADD.

. Save new C6 back in C6 location.

8. Check for completion.
a. Decrement loop counter (Y-reg).
b. 1f the counter does not equal 0, go to step 2.
c. Return to calling assembly language routine.

Mmoo QO IR

Implementation of MCALC

MCALC was implemented in microcode, using a short as-
sembly language routine called ACALC to handle the inter-
face between the FORTRAN-coded CALC and the microcoded
MCALC. UListings for these three programs are in Appendix
J.

The implementation of MCALC 1in microcode was very
difficult because of the number of floating point opera-
tions required -- three adds, one subtract, seven multi-
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plies, and one divide. This requirzment created two major
problems -- a subroutine return address problem and a WCS
space problem.

As discussed in the previous chapter, the microcoded

floating point routines in ROM cannot be used directly be-

cause of the problem of 1leveled subroutine calls in the M-
Series machine. Only one return address can be stored in
N' the SAVE register. This oproblem was solved in the LOADS
b microprogram by duplicating the subroutines in WCS and
modifying them to return to a fixed address in the calling
fi program. This direct return technigque was possible in

LOADS because only one call was needed to the floating

. point multiply routine and one <call to the floating point
h ,t... add routine.
= This direct return technique would also have worked in

MCALC for the one divide, but not for the adds, multiplies,

and the one subtract. The subtract routine is actually

-
'

part of the the add, so it is also effectively called sev~

Eg eral times. 1f a subroutine 1is called more than once from
EQ more than one address in the program, then the return ad-
p: dress must somehow be saved, or the subroutine must have
f: some way of modifying a fixed return address. Another
E. reyister could be used to store the extra return address,
| to augment the SAVE reyister, but there are no microin-
[

structions to make the transfer into the SAVE register.
‘ - The problem was Einall§ solved by storing all the return
{f .": addresses of the microprogram in a table and codingy a
L 75
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"jump" to the beginning of the table modified by an offset
saved into the instruction register. Thus, in a sense the
return address was stored in the instruction register.

The WCS space problem was created because of the ap-

parent necessity to duplicate all of the floating point

routines in WCS. Duplicating all four routines requirad
146 words of the 256-word WCS. This did not allow enough

room for the rast of the program. This problem was solved

L P aargy

by duplicating all but the divide routine, saving 53 words.

This was enough to allow the 256-word microprogram to fit

PR
.";l.l

kA % 2 AR A S
a4 s

in WCS. The one divide was accomplished by microcoding
instructions to load the divide arguments into their proper

- registers and main memory locations, and then returning to

'ir; a macroinstruction to perform the divide. The divide mac-
roinstruction was then followed by another macroinstruction
which reinvoked the microprogram at the continuation point.
This "trick" allowed control of the loop to remain at the
microcode level, even though the divide was initiated by a

macroinstruct.on.

Testing

Testing of MCALC consisted of a module test only.

Tais test was run on the AFIT HP system using the special

L
{; driver program CDRVR to provide the necessary inputs to
l MCALC (via CALC and ACALC). The test had two major pur-
‘ - poses : (1) to verify correct output, and (2) to imeasure

speed increase as a result of microprogramming.

| g 2K 2 o o SEeag BB A et
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Qutput Verification. The test data used for the

output verification phase of the test was obtained from
AFWAL/MLPJ personnel. Typical values for each of the
equation parameters were chosen. The method of verifica-
tion used was to simply compare the outputs of the micro-
programmed version of the program to the non-micropro-
grammed version.

As expected, the program did not produce the correct
outputs the first time, and debugging was necessary. De-
bugging was severely hampered by the size of MCALC. The
Micro Debug Editor (MDE), which was very useful in the de-
bugging of the LOADS microprogram, was much less useful
here. 1If breakpoints are used 1in the debugging process,

;i;; MDE requires almost half of the 256-word WCS space to op-
erate. This meant that MCALC had to be segmented into
overlays, and loaded into WCS 1in parcs. This overlay
technigque of debugging was found to be very frustrating anad
prone to human error. Breakpoints in each overlay had to
be carefully planned, so that the next overlay could be
loaded. Seygmenting the program into overlays also requicad’
keeping two separate versions. This led to several false
indications when the two apparently identical versions

(except for overlaying) gave different results. The de-

obugging difficulty was compounded even further by the fact
that MCALC was a loop.

‘ Because of the problems of wusing the overlays with the
MDE, the overlay debugging technique was largely abandoned
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for a higher-level approach. Under this approach, the en-
tire MCALC microprogram was loaded, and the MDE was not
used for setting breakpoints. 1Inputs were modified in the
FORTRAN driver to detect corresponding changes in the mi-
croprogram output. If it was necessary to examine a mi-
cro-level register, the microcode was modified slightly to
pass the register value back to the FORTRAN driver through
a main memory address. The MDE was still useful for making
small changes to microcode. This saved editing and reas-
sembly of the microprogram source, and also kept the source
and object files free of debugging code. This higher-level
debugging approach was successful, and the microprogramnmmed
version finally produced the expected outputs, completing
the first phase of the module test.

Speed Measurement. The speed measurements of MCALC

and the FORTRAN loop replaced by MCALC were accomplished
using executive calls to read the system clock. This was
the same technique that was used on the LOADS microprogramnm.
The routines were called 100 times from a loop to get ac-
curate timing measurements. The measurements showed the
microprogrammed routine to be about ten per cent faster
than the FORTRAN routine.

As in the specd improvement of the LOADS microprogram,
this ten per cent speed increase was significantly less
than the gains of six to ten times (Ref. 5:98) or two to
twenty times (Ref., 9:49) reported in the literature. Close
analysis of the assembly language generated for the FORTRAN
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routine provided the answer to this apparent disparity.
Totaling the instruction times for floating point and non-
floating point instructions showed that 66 per cent of the
routine's execution time was spent in the floating point
instructions. Since the microcoded version of the program
used these same floating point routines, no speed improve-
ment could be made to 66 per cent of the progran. This
meant that even if all the non-floating point instructions
could have been eliminated, the speed gain would still have
been only 34 per cent! Thus, the gain of ten per cent was

reasonable for this particular program.

- Summar

: 'i; This chapter covered the requiresments, design, imple-
:! mentation, and testing of a microprogram called MCALC, de-
o signed for use 1in the laser materials modeling progran.
The application of the microprogram showed a ten per cent

speed improvement in the refractive index calculation rou-

tine of the modeling program. This small improvement was

due to the high ratio of floating point to non-floating

bt A & AN AP g
oo A

point instructions in the program. This improvement was

not great enough to show an operational improvement of the

\ eI A
. SIS
- .

program, and thus was not tested on the operational ma-
t chine.
<
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VI. Automating the Tuning Process

Introduction

program 1is largely a manual

-

and requires microprogramming

z.. Dt et 2ty
PR P

tages motivate the study of

P

The purpose of this chapter is

has been done 1in the area of

Py
PRt ) 24
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this background, discuss the

automated tuning system on the

Background
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The microprogramming tuning technique

generation of the program activity profile,

grammer. This technigue, while effective,

The literature search done

-

-

¥ done work in the area of automatic tuning of
T; chitectures. Three different tuning

%' literature are presented here.

4 Tuning Approach #l. The

Eé one by K.A. El-ayat and J.A.

E approach the tuning process i

-

Fi -

tunnel control program and the laser materials

technique. Except

expertise. These disadvan-
automatic tuning technigues.

to review the research
automatic tuning, and
feasibility of developing an

AF1T HP 21MX computer.

for this thesis investiga-

tion revealed that several researchers (Refs. 13-

all of

is slow,

approaches from

ased in the wind
modeling

for the
the
tuning processes must be accomplished manually by the pro-~

costly,

that

with

had
computer ar-

the

tirst approach presented is

Howard (Ref. 17).

s divided into three

steps: (1) performance wmonitoring and measurewment,
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analysis of the data of the first step, and (3) synthesis
of microprograms to improve deficiencies found in the sec-
ond step. The goals of this approach are "significant im-
provement in performance, low implementation cost (over-
head) and minimal human intervention" (Ref. 17:86).

The performance monitoring and measurement step |is
essentially an enhanced version of the activity profile
generation wused in this thesis study. As discussed in
Chapter 1III, the monitoring can be done with hardware,
software, or microcode. Here, the step is done with a very
short (eight lines) microprogram, presumably added to the
instruction fetch routine. The result of the performance
monitoring and measurement 1is an instruction trace and a
trace of data referencing patterns. The instruction trace
indicates where a program should be tuned, and the data
trace 1indicates which data 1items should be stored in
micro-level registers to eliminate main memory fetches.

The purpose of the analysis step 1is to analyze the
data from the first step to determine where the progran
should be tuned. Two types of program segments are se-
lected for tuning, loops and non-loops. The loop segment
is a set of instructions which is terminated by a branch
back to the first instruction. The non-loop segment can be
terminated by either a branching or non-branching instruc-
tion. 1In the non-branching case, termination is indicated
when the profile activity of that instruction is 1less than
that of the preceeding instruction. If the segment is
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terminated by a branching instruction, the branch cannot be
back to the first instruction.

In the analysis algorithm, the execution profile is
searched, and each instruction execution count 1is compared
to a minimum preset threshold count. If the threshold is
met, the instruction corresponding to the execution count
is selected as the first instruction of the segment. Sub-
seguent instructions are examined to determine the end of
the segment and the segment type. A segment must also meet
a preset minimum size threshold (minimum number of machine
instructions). The resulting output of the analysis step
is a set of progranm segments ordered by segment type, size,
and execution frequency. This ordering assures that seg-
ments having the greatest potential for performance im-
provement are tuned first, since the WCS space may prevent
the tuning of all the selected segments.

The final step of this tuning approach is the synthe-
sis of the microprograms and the machine language instruc-
tions which invoke the microprograms. Program segments are
taken in order from the analysis step, and checked to see
if the corresponding microcode will fit in the WCS. If so,
the first machine instruction of the segment is replaced
with an instruction which invokes the microprogranm. This
instruction 1is followed by the segment operand addresses.
Bach instruction 1is translated into microcode using the
instruction opcode as the translation key. The microcode
is then loaded into WCS, ready for execution. Loop seg-
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ments require extra microcode to initialize working micro-

N
t

Sl o
3

level registers, which store 1loop variables, frequently

ol

used operands, and intermediate results.

Vi

v
L4

The synthesis step also includes microcode optimiza-

TRV

tion. The optimization applied here eliminates unnecessary
instruction and data fetches, makes use of local store and
emit fields within microinstructions, eliminatas redundant
and negated microoperations, and uses parallel microopera-
tions when possible.

Results of tuning experiments using this approacih show

that the speed of loop segments increases 4 to 8 times, and

.
y
B
N
I
L .
".
N

non-loop segments by 1.7 to 4 times. The speeds of the
overall programs show a 30 to 45 per cent improvement,

Tuning Approach #2. The second tuning approach

presented here is one by Philip S. Liu and Frederic J.
Mowle (Ref. 18). It is actually four separate methods of

tuning that they have studied: (1) "Static Loading of Inner

Loops, " (2) "Selective (and Static) Loading of Inner
Loops," (3) "Dynamic Overlaying of Inner Loops," (4) and
"User Aided." The first three methods consider only inner

loops of programs as candidate segments for microprogram-
ming. The candidate segments of the fourth method can be
either loop or non-loop segments.

The first method requirzs the compiler to identify all
the inner loops of the progranm. The loops are then con-
verted to microcode in the order that they appear in the
program., Data items within the loops, both variables and
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constants, are mapped into available micro-level registers.
I1f not enough registers are available, the most frequently
used data items are mapped first, and the remaining items
are accessed from main memory,. The conversion process,
which can be done at the source or object code levels,

continues until the WCS is filled. The major drawback of

this first method is that the WCS can be filled before all
the loops have been converted. Since the loops have been
g- taken in the order that they appear in the program, some
?i time-consuming loops may be omitted.

The second method remedies the drawback of the first

method by requiring the compiler to assign priorities to
the inner loops. Loops are then converted and loaded into
the WCS on a priority basis. The priority of an inner loop
is equal to its number of outer loops. The assumption here
is that the inner loop with the greatest namber of outer
loops will be executed the most times, and should be given

the highest priority. 1Inner loops with equal priority are

converted to microcode in order of size, the one with the

. most object instructions taken first. With this second

Bk itk i

method all tne inner loops may still not fit in the WCS,

{

Vs 8 ¥V A

but at least the most important ones are loaded first.
The third method insures that all inner loops of the

program can be loaded into the WCS, but not all at the same

-y

time. This method works like a cache memory system where

the main memory is divided 1into blocks, and a block is
T loaded 1into the faster cache memory when it is needed. 1In
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i this third method, all the inner 1loops are converted to
Ei ~;:' microcode, given an identification number, and stored in
Eg main memory. When a loop 1is needed, the 1dentification
&i number of the one currently in the WCs is checked. 1f the
;T needed loop is not in the WCS, then it 1is loaded over the
F! one currently in the WCS. The major problem with this
? method 1is the overhead of swapping microcode in and out of

the WCS. This overhead can be quite high because the WCS
word length is usually greater than that of the main memory

. word, requiring two, three, or even more main memory word

tranfers for one WCS word. The speed gain of the micro-
coded loops has to be great enough to offset this overhead.
The first three methods assume no a priori knowledge
about the execution of the program. The fourth method as-
sumes that the user has such knowledge about the program.
This method allows the user to specify the program segmencs

to be microcoded and the order in which they are micro-

coded. All the microcoded segments can be initially loaded
into the WCS as in the first and second methods, or they
Ej' can be dynamically overlayed as in the third method.

- All four of the above methods were tested with six
arbitrarily-chosen TFORTRAN programs. The resulting speed
gains are shown in Figure 12 (Ref. 18:Fig. 6) as functions
of the WCS size. As shown, the fourth method produced the
best program improvement, because of the human interven-

tion. The second method, however, did almost as well with

no human intervention. With a small WCS size, the third or
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overlay method did the best. Liu and Mowle recommend a
combination of the third and fourth methods, the user aided
and dynamic cverlay methods.

Tuning Approach #3. The third tuning approach is

one used in a system designed and implemented by K.
Sakamura, T. Morokuma, H. Aiso, and H. TIizuka (Ref. 19). A
model of the system is shown in Figure 13.

The model shows that the system consists of a comput-
er, a monitor, an analyzer, a data base, and a feedback
mechanism. The computer executes the program (or problem).
The monitor collects information on the relative frequen-
cies of machine instructions, sequences of instructions
(serial dependencies), and address and data values. The
analyzer uses this information obtained by the monitor to
determine which segments of the program should be micro-
coded 1in order to speed up the program execution. The an-
alyzer then synthesizes these new microcoded instructions.
The feedback path is used to write the newly synthesized
microprograms into the WCS, thus tuning the architecture of
the computer. The data base for learning stores informa-
tion about previous iterations of the tuning process. The
analyzer can refer to this information in order to minimize
the number of iterations.

An experimental system has been implemented using an
HP 2100 computer with a 1K X 24-bit control store (90.25K
ROM and 0.75K WCS). The monitor is a DYNAPROBE 7900+3000
hardware monitor, and a PDP-11V03 is used as the analyzer
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and synthesizer. A block diagram is shown in Figure 14.

As the program under test executes, the DYNAPROBE
monitors the execution and feeds the information directly
to the PDP-11V03. The PDP-11Vv03 analyzes the execution
information, synthesizes the new instructions, and passes
these new instructions to the HP 2100 through the 1I/0 in-
terface.

Since separate hardware is used for both the monitor
and analysis functions, there 1is very 1little, if any,
overhead in the tuning process. The result of the experi-
mental system is a 30 to 60 per c¢ent improvement in axecu-
tion time of the tuned programs over the originals.

Review of the Three Approaches. The three 1p-

proaches discussad are quite different from each other, but
they share two common steps: (1) automatic determination of
the program segments to microprogram, and (2) automatic
synthesis of the microprograms.

The first approach uses a microprogram to preciscly
monitor program execution. The program is divided into
loop and non-loop segments, and the execution data is used
to detaermine which segments to microprogram. 1In the second
approach the process of determining which segments to mi-
croprogram is simplfied by choosing only inner loop seg-
ments or other segments specified by the user. The third
approach uses a hardware monitor to obtain program execu-
tion data, and wuses a separate computer to perform the
analysis and determine which segments to wicroprogram.
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This approach is the most sophisticated of the three, but
B also requires the most hardware. The first approach is
next in sophistication, but requires modification of the
computer's microcoded fetch routine. The second approach
is by far the simplest and requires no extra hardware or
special modifications to the computer firmware.
fﬁ while all three approaches use automatic microprogram
éi synthesis, only the paper on the first approach covers the
!l actual algorithm used to perform this step. The software

&; which implements the algorithm resides in the machine run-

ning the program, and the synthesis step is performed in an
"off-line" mode. The third approach uses a separate com-
puter to perform this step, the same machine that performed
the analysis. 1In this approach the synthesis (and analy-
sis) is performed while the application program is running,
and the new microprograms ars transferred back to the ap-
plication machine through a feedback loop. Thus, the syn-
thesis is an iterative process performed in an "on-line"
mode. Details of the process 1in the second approach are
not given. Again, the third approach seems to be the most
sophisticated at the expense of more hardware.

The performance results of the three approaches are
similar. The first approach showed performance improve-
ments of 30 to 45 per cent, and the third approach showed
improvements of 30 to 60 per cent. The second approach had
similar gains, although they are given as ratios of non-
~ - tuned to tuned execution times, rather than percentages.
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Automating the AFIT HP 21MX System

The background information on the three automatic
tuning systems provides a good perspective for examining
the feasibility of an automated tuning system on the AFIT
HP 21MX system. The following discussion 1is intended to
present the general requirements and some possible ap-
proaches to developing such a system.

General Requirements. The general requirements can

be given in terms of user-system interface, system input
and output, and performance objectives.

The users of this system are expected to be competant
programmers in higher level languages, mainly FORTRAN,
since this is the major higher level language used on the
HP 21MX at Wright-Patterson. They may or may not have ex-
perience with HP 21MX assembly language, and probably do
not have microprogramming experience. The tuning system
should be designed with these experience levels in mind.
The system does not have to be totally automatic with no
user interaction, such as the one in the third approach
discussed. 1In fact, an interactive system may be prefera-
ble, as suggested by "user aided" method in the second ap-
proach. The system should, however, be user-friendly and
should make the details of the microprogramming and the
micro-level architecture as transparent as possible to the
user.

The 1inputs to the system consist ot the all of the
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available files associated with the program (FORTRAN or
assembly language) being tested, plus interactive inputs
from the user. The program files include the following:
source, relocatable object, memory image, listing, and load
map files. All of these files may not be needed to accom-
plish the tuning process, but are listed anyway as possible
inputs. The one output of the system is an executable mem-
ory image file of the tuned program.

A performance objective is an important requirement
for the system, but it is difficult to specify a program
speed improvement figure that the system should be able to
meet. The amount of improvement of a given program is
largely dependent on the characteristics of that program.
This is true for manual tuning as well as automatic tuning.
A 25 to 30 per cent improvement is probably a reasonable
performance objective for an automatic system as indicated
by the results of the three approaches discussed. Anything
below this is probably operationally insignificant for most
programs.

Possible Approaches. As discussed, the three ap-

proaches share two common steps in the tuning process: (1)
automatically (with possible user-interaction) determining
which segments of the program to microprogram, and (2) au-
tomatically synthesizing the microprograms. Possible ap-
proaches to automating the AFIT system are discussed in
terms of accomplishing these two basic tuning steps.

The activity profile generator program (ACTV) par-
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tially satisfies the requirement to determine which program
segments to microprogram. ACTV in its present form divides
a program under test into 50 equal intervals and determines
a profile couat for each interval. These equally divided
intervals do not, however, correspond to the 1logical seg-
ments of the program, the loops and non-loops, for example.
The profile counts for these equal intervals must be con-
verted into counts for the logical segments. This requires
first the determination of the address boundaries of the

logical segments, and then the correlation of these bound-~
aries to the profile interval boundaries,

aAn example may help explain the process. Figure 15
contains a block diagram and partial execution profile of a
program with three segments -- a non-loop followed by a
loop, which is followed by another non-loop. The address
boundaries in octal for the three segments are 40000 to
40250, 40250 to 40330, and 40330 to 40620 respectively.
Finding the segment boundaries requires an algorithm which
analyzes the branching instructions of the program. The
example shown contains at 1least one branching instruction,
a "jump" from the end of the loop segment back to the bpe-
ginning. No software currently exists at AFIT to perform
the segment-bounding task on the HP system, but the soft-
ware should not be difficult using an existing algorithm,
El-Ayat and Howard, authors of the first approach dis-
cussed, describe one algorithm for finding segment bound-
aries (Ref. 17:86). Their algorithm raquires a very pre-

94




3! Program Activity Profile for EXAMPLE
NS From 040000 to 040620 EXAMPLE LOGICAL
in Increments of 10 SEGMENT MAP
INTERVAL FROM TO NO. OF
NO. HITS e 040000—
1 000000 040000 4.
2 040000 040010 ~
3 040010 040020 .
) NON-LOOP
) SEGMENT
8 040060 040070 2. }—o——>
21 040230 040240 1./J
22 040240 040250 .
23 040250 040260 17.\7 040250
24 040260 040270 22.
25 040270 040300 30. LOOP
26 040300 040310 27. | SEGMENT
e 27 040310 040320 25.
\ 28 040320 040330 10.~7
29 040330 040340 1.\7 L 040330
30 040340 040350 .
40 040460 043102 1.
41 040470 043107 2.
) \ NON-LOOP
. SEGMENT
46 040540 043140 3.
47 040550 043145 1.
48 040560 043152 2.
49 040570 043157 .
50 040600 040610 >
51 040610 040620 ]
52 040620 077777 3. L _o40620___ |
i

Figure 15. Mapping Profile Interval Counts to Logical
Program Segments
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cise program activity profile, however, and would have to
be modified to work with the statistical profile provided
by ACTV. Liu and Mowle, the authors of the second ap-
proach, mention another technique called ‘“control flow
analysis" for detecting loops in a program, but do not give
details of the technique (Ref. 18:817). User interaction
may also be beneficial in finding segment boundaries of a
program.

When the segment boundaries are found, the conversion
of interval counts to segment counts can be done. The ac-
tivity profile in the figure shows counts or "hits" for
several of the 52 intervals (50 intervals in the program
range and two outside). The bracketed "hits" show the
mapping of the profile intervals to the logigal segments of
the program. From a mapping such as this, the profile
counts for each logical segment can be determined, and a
decision on which segments to microprogram can be made.
This process can easily be done by software given all the
input information shown in the figure.

The reader should note that this is a contrived exam-
ple with the interval and segment boundaries chosen to al-
low a perfect mapping. In practice, this does not usually
happen. A profile interval can overlap a segment boundary,
making it difficult to determine which segment receives the
profile count. This is probably not major problem, because
other segment counts can be used to determine the probable
correct segment. If the program is very large, the inter-
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vals of the profile can actually be larger than the logical
segments, since the profile generator program presently
allows only 50 intervals. Several logical segments could
then occur in one interval, again making a correct mapping
of the count difficult. Two possible solutions to this
problem exist. The number of profile intervals can be dy-
namically adjusted (within main memory limits) to match the
program size, or several profiles can be run with each
"looking" at a different portion of the program. This
latter approach was used in the manual tuning of the wind
tunnel and laser materials programs.

Another approach to determining which program segments
to microprogram 1is to choose only loop or inner-loop seg-
ments as in the second approach of the background informa-
tion. This approach eliminates the need for any type of
activity profile generation and the problem of mapping
profile intervals to program segments. The segments must
still be identified, but this has to done anyway. This
approach has the advantage of simplicity, and the results
from the three approaches discussed shows that it compares
favorably with the others. Also, the analysis of the two
programs in this thesis study supports the theory that
loops account for much of the program activity, and are the
best candidates for microprogramming.

From a user point of view, determining which segments
of a program to microprogram is the easier of the two basic
steps in the tuning process. The concept of program seg-
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ments, such as loops and non-loops, and their execution
times 1is nothing really new to the higher-level language
programmer. The second step of synthesizing the micropro-
grams is a much more unfamiliar task, and requires fawil-
iarity with the architecture of the machine and assembly
language and microprogramming expertise. Thus, the auto-
mation of this step is even more important. An example is
used here to explain the synthesizing process.

Figure 16 shows the synthesis process for two macro-
instructions from the manually-tuned wind tunnel subroutine
SPEED. The two macroinstructions, "LDA .YZT" and "STA
..YZT", are shown along with the two "BSS" pseudo-instruc-
tions, which define memory locations for .YZT AND ..YZT.
The function of these instructions 1is to simply 1load the
"A" register with the contents of .YZT and store that con-
tents into ..YZT (i.e., ..YZT = .YZT).

The figure shows the breakdown of the instructions'
machine code into four fields -- D/I1, opcode, %Z/C, and ar-
gument relative address (all numer > values in octal). The
opcode and argument relative address are self-explanatory.
The D/I is a bit indicating whether the argqument relative
address 1is used directly or indirectly. The 2/C bit indi-
cates whether the argument address is relative to page zero
of memory or the current page. For these two instructions,
both addresses are direct and relative to the current page
-- page 42000 as indicated by the instruction addresses.

The breakdown of the machine code is the ke to the
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Two Macroinstructions to be Microprogrammed

D/I OPCODE

Instruction Address Machine Code Label Instruction
———<042647 ———<062654 LOOP2 LDA LYZT
—<042650 ~——<072670 STA .. YZT
042654 000000 .YZT BSS 1
042670 000000 . YZT BSS 1
Y
4 ARGUMENT' 7 ARGUMENT®
RELATIVE RELATIVE

Z/C ADDRESS D/1

OPCODE Z%/C ADDRESS

\0 14, W1 0654/ 20 l6y \1 0670,
MICROCODE LOOK-UP TABLE

D/I OPCODE MICROCODE
Ly FORM . . .
ARGUMENT . . .
ABSOLUTE . . .

ADDRESS 0 14 44074707

> 44000447
03700547
——<042654 0 16 44074707
~—<042670 > 03700461 m

37726007

Synthesized Macroinstructions

LOOP2 OCT 105620 Invoke

>0CT 042654 .YZT address
—>0CT 042670 ..YZT

microprogram

address

l37726007

44074707 READ
44000447 READ

03700547

44074707 READ

03700461

Synthesized Microinstructions

INC PNM P
INC M TAB
PASS A TAB
INC PNM P
MPCK PASS M TAB

WRTE RTN PASS TAB A

Read argument address
Read argument

Load into register A
Read argument address
Address to M register
for WRTE; Do memory
protect check

Store contents of A
Return to FETCH routine

Figure 16. Microprogram Sy

99

nthesis Example




synthesis process. The D/I and opcode fields can be used
as an index into a microcode look-up table to obtain a se-
quence of microinstructions which will replace the original
macroinstruction. This partial 1look-up table is derived
indirectly from the microcode for the basic instruction set
stored in control store ROM. A listing for the entire ba-
sic instruction set of the HP 21MX is available in Appendix
E of Reference 32. Table XI shows the microinstructions
for the memory reference group instructions, such as the
LDA and STA instructions in the example. The microcode in
Table XI cannot be used directly to translate a macroin-
struction to a microroutine. The reason for this is that
the macroinstruction 1is performed partially by the micro-
coded fetch routine (shown at the bottom of Table XI) and
partially by the macroinstruction's microroutine. The LDA
microroutine, for example, consists of only one microin-
struction as shown in Table XI (LDA and LDB are shown as
LD*). The fetch routine in this case performs the major
part of the instruction. Another reason the microcode from
tha table cannot be used directly 1is that the microopera-
tions within the microinstructions often perform operations
which are conditional on information in the instruction
register. When the macroinstructions are replaced by mi-
crocode, they are no longer fetched, and are not stored
into the instruction register. The microroutines stored in
the look-up table must compensate for the lack of the in-
struction fetch and the information 1in the instruction
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register.

The microroutines for the LDA and STA instructions in
the example are each three microinstructions long. The
mnamonics for the microcode from the look-up table ars
shown at the bottom of Figure 16. The "RTIN" microoperation
of the last microinstruction is not actually encoded in the
table. It is added to the last microinstruction to trans-
fer control back to the macroinstruction level.

The Z/C and argument relative address fields are used
to form an argument absolute address. 1If the address is
relative to page zero, the relative and absolute addresses
are equivalent. If the address 1is relative to the curreat
page, the current page address 1is added to the relative
address. The example shows the formation of the ,YZ'T and
..¥YZT absolute aadresses. These addresses are sequentially
annexed to an argument list following a synthesized macro-
instruction. This macroinstruction invokes the synthesized
microroutine, and along with the argument list, replaces
the original macroinstructions.

Synthesizing the micvroroutines in the manner described
usually does not produce optimal microcode. Optimization
should be performed as another step of the synthesis pro-
cess, as 1in the first tuning approach discussed. Fre-
guently used argument addresses should be removed from the
argument list and stored into available micro-level regis-
ters. The address can then be accessed by a ragister
transfer instead of a main memory read, saving at least one
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microinstruction. Microinstructions which access main
memory should be followed by microinstructions which do not
accuess the memory data register, the "T" register. Memory
reads and writes require two microcycles, and such in-
structions cause a "processor freeze" (Ref. 32:3-14) until
the read or write is complete. At least three "freezes"
occur in the synthesized microroutine of the example, but
nothing can be done in this case. Parallel microoperations
should be used as much as possible. An example of this is
the addition of the "RTN" to the last microinstruction of
the example, rather than making it a separate microin-
struction. Redundant or negated microinstructions should
also be eliminated (Ref. 17:87). These optimization checks
can probably be done during the synthesis, but may be more
easily done during a "second pass".

The final products of the synthesis step are the syn-
thesized macroinstructions and microinstructions as shown
at the bottom of Figure 16. The macroinstructions may di-
rectly overwrite the ones they are replacing in main memory
or in the memory image file, assuming no relocation or op-
erating system problems exist. The wicroinstructions may
be written to the WCS or to a file 1sing existing micro-
program utilities.

The synthesis step, while more difficult than the
analysis step, 1is staightforward and 1is quite adaptable to
an automated tuning system. Probably the most difficult
N problem is the building of the microcode look-up table,
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since this 1is largely a manual process. The documented
microroutines for the HP 21MX base instruction set can be
used as a basis for this table, but require substantial
modification because of the elimination of the fetch in-
struction as discussed earlier. Although building the ta-
ble presents a substantial manual microprogramming effort,
it can be done and is not considered a major obstacle to

automating the synthesis step.

Summary
This chapter has dealt with the feasibility of imple-

menting an automated tuning system on the AFIT HP 21MX
computer., Three automatic systems from the literature were
presented to provide background on the tuning process and
different approaches to the implementation of such a sys-
tem. The general requirements for an AFIT system were
discussed in terms of user-system interface, system input
and output, and performance objectives. Finally, possible
approaches to automating the system were discussed in terms
of accomplishing the two basic steps of the tuning process
-- determining which segments of the program to micropro-
gram, and automatically synthesizing the microprogranms.
Although many of the implementation details have not been
discussed here, an automated tuning system on the AFIT HP

21MX is certainly considered feasible.
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VIIL, Results, Conclusions, and Recommendations

Introduction

This thesis study focused on the performance improve-
ment of HP 21MX application programs using microprogramming
tuning techniques. Routines from two application programs
were chosen as candidates for microprogramming as a result
of a survey of HP users at Wright-Patterson Air Force Base.
The two routines chosen were a stress calculation routine
for a wind tunnel control program and a refractive index
calculation routine for a laser materials modeling programn.
Microprograms were written and applied at points in the
routines indicated by activity profile analysis. The speed
improvement of the resulting programs was then measured.
The experience gained from tuning the two application pro-
grams and studies in the literature provided the background
for investigating the feasibility of developing an auto-
mated tuning system on the AFIT HpP 21MX. This chapter
lists the results, conclusions, and recommaendations of the
thesis study.

Results

The following are considered the major results of the

study:
1. The performance improvement of the wind taannel
stress calculation routine was about 31 per cent. This

resulted in an operational improvement of 33 per cent in
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the rod adjustment process of the wind tunnel control pro-
gram by allowing the simultaneous adjustment of four rather
than three rods. The routine was subsequently integrated
into the operational version of the program. This may have
been the first user-microprogram to be applied to an oper-
ational HP 21MX program at Wright-Patterson.

2. The performance improvement of the laser materials
routine was about 10 percent, which was not enough to no-
ticeably improve the waveform display for the wuser. This
program showed the limitations of microprogramming in im-
proving a routine with a large number of floating point
operations, Writing and debugging the microprogram for
this routine also provided experience working with large

microprograms and leveled subroutines.

3. Both the wind tunnel and laser materials micro-
programs were developed using software engineering tech-
niques. This resulted 1in structured microprograms that
were documented much better than the original FCORTRAN and
assembly language candidate programs.

4, Work on the two application programs exposed at
least two HP users at Wright-Patterson to user-micropro-
gramming. These users will hopefully consider the possi-
bility of applying microprogramming to future applications.

5. The investigation into the feasibility of devel-
oping an automated tuning system on the AFIT HP computer
showed that such a system was feasible, and possible ap-

Lo proaches to the development were discussed.
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Conclusions

Based on the above results, the following conclusions

are made:

1. Both of the application programs tuned involved
floating point operations. Although two programs are
hardly a large enough sample on which to base any hard
conclusions, the inference here 1is that the HP 21MX appli-
cation programs in greatest need of performance improvement
are those with floating point operations. Ironically,
these are the ones that can be helped the least with mi-
croprogramming on the HP 21MX-M Series or 21MX-E Series
computers. The 21MX-F Series, however, has floating point
operations implemented in hardware, and programs with a
large number of floating point operations running on this
series should benefit as well from microprogramming as
programs with non-floating point operations.

2. Microcode can be structured and well documented
using software engineering techniques. The complexity of a
program, however, can increase significantly with the ad-
dition of microcode. The laser materials code segment, for
example, was changed from a simple l0-statement FORTRAN
"DO" loop to a "CALL" to a 38-statement assembly language
routine, which invoked a 256-word microprogram! All this
was done for a 10 per cent increase in speed! In this
particular case the trade-off of speed versus complexity
- - could not be justified, because the increase in complexity
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greatly outweighed the overall benefit of the 1increase in
}f{’ speed. In the wind tunnel program, however, the routine
was already at the assembly language level,. Thus, much of
the complexity already existed, and substituting the code
to invoke the microprogram actually decreased the assembly
language code. The microprogram was about one-half as lcng

as the laser materials microprogram, and the speed increase

was three times as much. The trade-off in this case was
justifiable.
3. The manual tuning technique used in this thesis

study 1is too cumbersome to become widely used at wWright-
Patterson (or anywhere else). To use this technique a
programmer must learn the HP assembly language, the micro-
assembly language, their associated debugging tools, and
the internal architecture of the system. The training
time, along with application program analysis and micro-
program development time represents a large investment with

little guarantee of results.

Recommendations

The following recommendations are made as a result of
this thesis investigation:

1. Since the application progyrams of this study both
involved floating point operations, further study conld
focus on other types of applications where microprogramming
might be of better benefit. Two possibilities are high-

- speed sorting and high-speed graphics. One ASD/ENAMA
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program called MPASS (Refs. 26,36) could possibly use both
of these capabilities. The program was not considered in
this study because it had not been moved from the CDC com-
puter to the HP 21MX. There are still no plans to move the
program, but a high-speed sorting and graphics capability
might seriously influence such a move.

2, Users with programs bound by floating point oper-
ations should consider upgrading to an HP 21MX-F Series
machine. The hardware floating point operations of the F-
Series machine are roughly 20 times as fast as the micro-
programmed functions of the M-Series machine (Refs. 34:3-25
and 35:13-20). A letter received from the Hewlett-Packard
Company indicates that no hardware floating point proces-
sors are available for the M-Series machine from either
thém or any other known source (Ref. 37).

3. Because of the drawbacks of the manual tuning
technique used 1in this study, it is recommended that an
automated system, as described in the previous chapter, be
designed and implemented on the AFIT HP 21MX computer. 1In
support of this effort, the upgrading to an F-Series should
be seriously considered because of the floating point and
microprogramming limitations of the M-Series machine. The
initial work could, however, be done on the M-Series. An
automated system would make tuning of application programs
practical for all HP programmers. Without such a system,

user-microprogramming has little future on this machine.
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Appendix A

Microprogramming Concepts

Background

Microprogramming is a lower 1level of computer pro-
gramming (Ref. 27:Chapt. 2). Program instructions written
in higher 1level languages (HLL) such as FORTRAN are first
translated or compiled into machine-dependent machine lan-
guage instructions (macroinstructions) in non-real time.
Bach macroinstruction is then translated or mapped (inter-
preted) into one or more microinstructions at the time of
program execution. This instruction hierarchy is 1illus-
trated in Figqure 17.

Figure 18 shows an example of a microprogrammed com-
puter architecture. The execution of a program begins with
the fetching of the first macroinstruction of the program
from main memory. The operation code (opcode) of the mac-
roinstruction points indirectly to the control store (mi-
croprogram memory) location of its corresponding microrou-
tine. The microinstructions are sequentially fetched from
the control store and executed, activating the various
hardware register transfer control points, and wultimately
causing the computer to perform the operation specified in
the original higher level language instruction. The next

macroinstruction is then fetched, and the process continues
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(Machine Instruction)
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Microinstruction
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REGISTER
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Figure 18, Example Microprogrammed Computer Arcunitecture

- Senbmmbanteud - -, Ill‘i. i‘l
o

116




Taiuﬁhhnf

S ———" vH-,v,.,' -
AN L et

T
i i L L

until all macroinstructions of the program have been exe-
cuted. Each macroinstruction is essentially a call to a
microroutine. The opcode of the macroinstruction indicates
the "name" (address) of the microroutine, and the other
fields of the macroinstruction such as address and register
fields serve as the parameters to be passed to the micro-
routine.

Microprogramming requires much greater attention to
detail than programming in a higher level language or as-
sembly language, because of the number of lower-level op-
erations and the timing of those operations. The micro-
programmer must be concerned with transfers between buses,
registers, and main memory, and the operations of the
arithmetic logic unit. These transfers and ALU operations
are specified in the fields of the microinstruction. These
fields are called micro-orders or micro-operations.

Consider, for example, the simple problem of incre-
menting a variable called aA. In a higher level language
this can be done with one instruction, such as A=A+l. In
assembly language this problem may require three instruc-
tions -- an instruction to load the value A into an accu-
mulator register, an instruction to increment the accumu-
lator, and an instruction to store the new value of A back
into its memory location. 1In microcode the problem re-
quires several microinstructions, each microinstruction
comprisi several fields or micro-orders. The required
micro-orders may be as follows:
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1) Move the address of A from the instruction register
to a data bus.
2) Move the address from the bus into a memory address

register.

3) Read the value A from its memory location into a
memory data register,

4) Move the contents of the memory data register to
the data bus.

5) Move the value of the data kbus to the arithmetic
logic unit (ALOD).

6) Perform an increment operation in the ALU.

7) Move the result from the ALU back to the data bus.

8) Move the result from the bus back to the memory

data register.
9) Write the new value of A back into its memory

location.

The number of microinstructions needed to perform
these nine micro-orders is dependent on the architecture of
the particular machine. Three or four microinstructions is
a realistic number. For example, micro-orders 1 through 3

may make up the fields for one microinstruction, 4 through

6 the second, and 7 through 9 the third microinstruction.

How Microprogramming Improves Speed

Since higher 1level language instructions end up as
microinstructions anyway, it is not apparent that directly
microprogramming all or part of a program would have any
effect on 1its execution speed. There are hidden factors,
however, which do have an effect. Some of the most impor-
tant factors are instruction fetch time, memory speed,
parallelism, and other additiocnal micro-level capabilities.

The time required to fetch an instruction from memory
represents 35 to 45% (Ref, 7:11) of the total execution
time of an instruction. As shown 1in Figure 17, each mi-

croinstruction of the «computer's basic instruction set
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concludes with a jump to a macroinstruction fetch routine.
By combining the microroutines generated by two or more
macroinstructions, the instruction fetches between micro-
routines are eliminated. Combining microroutines essen-
tially creates a new macroinstruction with the power of
several of the original macroinstructions, and only one
instruction fetch is required. The elimination of the ex-
tra instruction fetches can significantly improve the exe-
cution speed.

Microinstructions also must be fetched from memory.
The fetch of a microinstruction is, however, significantly
faster than that of a macroinstruction. Because the con-
trol store is much smaller than a computer's main memory,
faster and more expensive memory components can be used.
This memory is typically two to five times faster than main
memory (Ref. 7:11).

Parallelism is also an important factor in improving
execution speed. Since a microinstruction is made up of
several microorders, independent parallel operations can be
specified in one microinstruction. An example of this
concept is the performance of an arithmetic operation and a
memory operation at the same time. Parallel operations can
provide additional gaians in speed. The number of parallel
operations 1is, however, highly dependent on the number of
fields in the microword (the width of the microword) and
the algorithm being microprogrammed.

The additional capabilities at the micro-level can

119




also contribute to an increase in execution speed. Addi-
tional registers allow the storage of constants, frequently
used operands, and intermediate results. This additional
storage can often be used to eliminate time-consuming ref-
erences to main memory. The direct testing of flags and
direct shift control can also be wused in some applications
to improve speed.

Combining all of these factors can provide speed gains
many times that of assembly language. Realistic values are

between 2 and 20 times (Ref. 9:49).
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APPENDIX B

Glossary of Terms Used in this Report (Ref. 7:2)

Arithmetic Logic Unit -- Part of the computer's hardware

which performs arithmetic, logic, and other operations.

Assembly Language -- Computer-dependent machine language

which is the base instruction set. 1In a microprogramned
computer, each Assembly language instruction is implemented

by a specific microprogram.

Control Processor -- The section of the computer which

determines what the computer 1is to do for each machine

instruction.
Control Store -- The memory, used by the Control
Processor, in which microprograms reside. It may be

implemented with ROM, PROM, and/or WCS.
Fields -- Microinstructions are divided into several
parts, known as fields. Each field specifies different

micro-operations, which may be independent of one another.

Machine 1Instructions -- The binary-coded bit patterns

that actually control the operations of the computer via
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the control Processors. Programs written in symbolic

languages, such as FORTRAN, are translated to machine

instructions by Compilers, Assemblers, or Interpreters.
Microcode -- Another name for the microinstructions that
make up a microprogram, either in source language or in

object code form.

Microinstruction =-- One instruction of a microprogram,

typically made up of one or more micro-orders.

Micro-order -—- A complete operation, such as 1loading a

register or setting a register equal to the product of two
other registers. Depending wupon the control processor,
more or less than one micro-order can be specified by a

microinstruction.

Microprogram -- A program written for a microprogrammed

computer at the control processor level to control the
computer., In a totally microprogrammed computer, every

machine instruction is implemented by a microprogram.

Microprogramming - The process of developing

microprograms for control of a microprogrammed computer.

PROMs (Programmable Read-Only Memory) and ROMs (Read-Only

Memory) -~ Are components used to store microprograms in
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control store. Once programmed, they cannot be altered.
ROMs differ from PROMSs in that ROMs have their
microprograms installed when they are manufactured while

PROMS are programmed after they have been made.

WCS (Writable Control Store) -- Control store implemented

with Random Access Memory so that the user can dynamically

alter its contents.
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APPENDIX C

The following is a list of HP users

Patterson Air Force Base:

Jim Leonard

Ken Greer

Jeff Barnes

Al Bowling
Ralph Pinney
Lloyd Clark
Glenn Williams
Bob Ballard
Frank Gondolfi
Bryan Kent
Conrad Phillippi
John Bankovskis
Carl Williams
Mike Fabian
John Warner
Bill Griffin
John Steidle
Russ Soerens

Larry Linder

AFWAL/AARF-2
AFWAL/RARF~2
AFWAL/AARF-2
AFWAL/AARF-2
AFWAL/AARF-2
AFWAL/AARF-4
AFWAL/FIMN
AFWAL/FIMN
AFWAL/AAWP
AFWAL/AAWP
AFWAL/MLPJ
AFWAL/RARI
AFWAL/FIEE
AFWAL/FIEE
AFWAL/FIEE
ASD/ENAMA
ASD/ENAMA
ASD/ENAMA

AFFDL
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55987
55987
55987
55987
55987
53050
52493
52493
55076
55076
52334
56361
56078
56078

at Wright-

Bldg
Bldg
Bldg
Bldg
Bldg
Bldg
Bldg
Bldg
Bldg
Bldg
Bldg
Bldg
Bldg
Bldg
Bldg
Bldg
Bldg
Bldg

Bldg

23

23

23

23

23

23
26/240
26/240
821
821
651
622
45/93
45/93
45/93
125
125
125
192
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Appendix D

This appendix contains listings for the activity

profile generator program (ACTV) and its subroutines (RCORE

- and IDGET). The original program was written by Jim
E! Leonard, AFWAL/AARF-2, WPAFB, The program was modified
Eﬂ slightly during this thesis study to run on the AFIT HP
;i 21MX computer.

|
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. FTN4,L,B
p . PROGRAM ACTV
- DIMENSION FBF(52),IPR(52),IN(3)
ACTIVITY PROFILE GENERATOR USING SUSPEND ADDRESS
FROM ID-SEGMENT.
BY JIM LEONARD
USAF AVIONICS LAB, WPAFB

cOooan

- 5 WRITE(1,10)
- 10 FORMAT (" ACTIVITY PROFILE GENERATOR ",//,
A 1 * TYPE PROG NAME " )
IN(1l)=2H
IN(2)=2H
IN(3)=2H
READ(1,20) IN
20 FORMAT (3A2)
C GET ADDRESS OF ID SEGMENT
IDSEG=IDGET (IN)
IF (IDSEG.NE.O0) GOTO 100
WRITE(1,30)IDSEG
30 FORMAT ( "IMPROPER PROGRAM NAME, IDSEG= ",I8)
GOTO 5
100 WRITE(1,110)
110 FORMAT("TYPE PROFILE BOUNDS, LOWER-UPPER & INTERRUPT
1 TIME(1-9)",/," XXXXX XXXXX X")
NT=0
READ(1,120)IL,IU,NT
120 FORMAT(2K6,16)
IF(NT.LE.O)NT=3
INITIALIZE PROFILE BUFFER
DO 130 I=1,52
FBF(I)=0.
130 CONTINUE
ID=10-1IL+1
INCR=(IU~IL+1)/50
IF(INCR*50.LT.ID) INCR=INCR+1
IW1l=IDSEG+15
IW2=IDSEG+8
IF PROGRAM IS NOT CURRENTLY ACTLIVE DON'T RECORD LOCATION
300 CALL RCORE(IW1l,IVAL)
IF (IAND(IVAL, 15B).NE.1)GOTO 200

i

i

C READ SUSPENDED LOCATION
CALL RCORE(IWZ,IVAL)
C CHECK FOR BEFORE BOUNDS

IF (IVAL.GE.IL,;GOTO 140
FBF(1)=FBF(1l)+1l.
GOoTo 200
C CHECK FOR BEYOND BOUNDS
140 IF(IVAL.LE.IU)GOTO 150
FBF(52)=FBF(52)+1
GOTO 200
C MARK INTERVAL
150 IVAL=(IVAL~-IL)/INCR+2
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FBF(IVAL)=FBF(IVAL)+1l.
c TERMINATE MONITORING IF OPERATOR BREAKS
200 IF(IFBRK(IDMY))500,210
210 1ISC=0
Cc WALT DESIRED INTERVAL
CALL EXEC(12,I1sC,1,0,-NT)
GOTO 300
500 WRITE(10,510)IN,IL,IU,INCR
510 FORMAT(" PROGRAM ACTIVITY PROFILE FOR "“,3A2,/,
1" FROM",K8," TO",K8, " IN INCREMENTS OF",18)
515 FORMAT(" INTERVAL NO. FROM TO NO OF HITS "
1l ,"NORMALIZED HITS NORMAL ACCUM")
C FIND MAX VALUE OF HISTOGRAM
FMX=-1
TSUM=0
DO 520 1=2,51
TSUM=TSUM+FBF (I)
IF (FMX.LT.FBF(I))FMX=FBF(I)
520 CONTINUE
C EXIT IF NO ACTIVITY IN DESIRED RANGE
IF(FMX.GT.0)GOTO 600
IF((FBF(1)+FBF(52)).GT.0)GOTO 540
WRITE(L1,530)
530 FORMAT("NO PROGRAM ACTIVITY RECORDED--AT ALL!!!")
WRITE(10,530)
sTOP
540 WRITE(1,550)FBF(1),FBF(52)
550 FORMAT("NO PROGRAM ACTIVITY IN REGION OF INTEREST",/

l ,"BEFORE=",E13.7," AFTER="E13.7)
WRITE(10,550)FBF(1),FBF(52)
C WRITE TABLE OF ACTIVITY PROFILE
600 WRITE(1l0,515)
SUM=0.

TSM1=TSUM+FBF (1)+FBF (52)
DO 650 I=1,52
SUM=SUM+FBF (1) /TSM1
FNORM=FBF (1) /FMX
IFR=IL+INCR* (I~2)
[TO=IFR+INCR
IF(I.EQ.1)1FR=0
IF(I.EQ.52)IT0=32767
WRITE(10,610)I,IFR,ITO,FBF(I),FNORM, SUM
610 FORMAT(4X,I3,6X,2K7,F10.0,F17.8,F15.5)
650 CONTINUE
C PLOT HISTOGRAM ON PRINTER
WRITE(10,510)IN,IL,IU,INCR
WRITE(10,700)
700 FORMAT(" INTERVAL 0 2 4 6"
n 8 lll)
FOR EACH DATA INTERVAL
SUM=-FBF(1)/TSUM
DO 800 J=1,52
C CLEAR PRINTER BUFFER

(@]
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710

720
800

Do 710 1=1,51

IPR(I)=2H

CONTINUE

CALCULATE INDEXS
SUM=SUM+FBF (J) /TSUM
INDX=SUM*50.+1.5
IF((J.NE.1l).AND.(J.NE.52))IPR(INDX)=2HII
INORM=50.*FBF(J)/FMX+1.5

PRINT AN X IF OFF PLOT
IF(INORM.LT.1l)INORM=-1

IF (INORM.GT.51) INORM=-51

PRINT AN * IF ON THE PLOT

IF (INORM.GT.0)IPR(INORM)=2H00
IF (INORM.LT.0)IPR(-INORM)=2HXX
WRITE(10,720)J, (IPR(K),K=1,51)
FORMAT (2X,16,3X,51Al1)

CONTINUE

STOP

END

ENDS
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* * % % ¥ ¥ ¥ ¥ * ¥ ¥

IWl
w2
RCORE

NAM RCORE

READS AND RETURNS THE CONTENTS OF A SINGLE
MEMORY LOCATION.

THIS IS A SUBROUTINE TO THE ACTIVITY PROFILE

GENERATOR

JIM

LEONARD WROTE.

THE ACTIVITY PROFILE SOURCE PROGRAM IS ON FILE &ACTV::20

JOHN STEIDLE

ENT
EXT
NOP
NOP
NOP
JSsB
DEF
LDA
LDA
STA
JMP
END

RCORE
. ENTR

. ENTR
IwWl
IwWl,I
0,1
Iw2,I
RCORE, I

Aades dde i an g

ADDRESS OF ADDRESSES OF DESIRED VALUE
ADDRESS FOR RETURNED CORE VALUE

GET PARAMETER ADDRESSES
READ ADDRESS

READ CONTENTS
STORE IT
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INTEGER FUNCTION IDGET(IN)

DIMENSION IN(3)
FUNCTION IDGET FINDS THE ADDRESS OF THE ID SEGMENT
OF THE PROGRAM NAME PASSED BY THE CHARACTER ARRAY
"IN". THIS FUNCTION IS PERFORMED BY SEQUENTIALLY
SEARCHING THROUGH THE ID SEGMENTS OF THE SYSTEM
LOOKING FOR A MATCH ON THE INPUT PROGRAM NAME. WHEN
THE CORRECT ID SEGMENT IS FOUND, THE ADDRESS OF THE
SEGMENT IS PASSED BACK IN "IDGET". IF THE SEGMENT
IS NOT FOUND, "IDGET" IS SET TO ZERO.

T

e NeKeRe RN XK KR LS

GET ADDRESS OF ID SEGMENT ADDRESS TABLE IN LOC 1657 OCTAL
IPTR1=1657B
CALL RCORE(IPTR1,IPTR2)
C LOOP TO SEARCH THROUGH ID SEGMENT TABLES
900 CALL RCORE(IPTR2,IDGET)
IF (IDGET .EQ. 0) GOTO 950
IPTR2=IPTR2+1
C POINT TO NAME AREA OF TABLE AND COMPARE THE 3 WORDS
C CONTAINING THE 5 CHARACTER PROGRAM NAME
IPTR1=IDGET+12
CALL RCORE(IPTR1,INAME)
IF (INAME .NE. IN(1)) GOTO 900
1PTR1=IPTR1+1
- CALL RCORE(IPTR1,INAME)
\ IF (INAME .NE. IN(2)) GOTO 900
IPTR1=IPTR1+1
CALL RCORE(IPTR1, INAME)
C COMPARE 5TH CHAR IN UPPER BYTE OF THE WORD.
C IGNORE THE LOWER BYTE.
IF (IABS(INAME-IN(3)) .GT. 255) GOTO 900
950 RETURN
END
ENDS
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Appendix E

The following are instructions for running ACTV on the
AFIT RTE-III system:

1. ACTV and the program to be tested must be compiled
and loaded prior to running ACTV. If the core image files
already exist (saved from a previous session), type the
following commands:

RP,ACTV

RP, test program name

EX

Any key to get the * prompt
If the relocatable object files (the % files) for ACTV or
the test program have been loaded during the current
session, the corresponding RP command can be ommitted.

2. Set the priority of ACTV to 89 by the following
command :

PR,ACTV, 89

Any key to get the * prompt
3. Run ACTV by typing:

RU,ACTV

4. ACTV responds:

ACTIVITY PROFILE GENERATOR
TYPE PROG NAME
5. Enter the 5-character program name.

6. ACTV responds:
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TYPE PROFILE BOUNDS, LOWER-UPPER & INTERRUPT
XXXXX XXXXX X TIME (1-9)
7. Enter the octal address bounds of the program
region ACTV is to monitor and the rate at which the program
is to be interrupted. The smaller the interrupt time
number, the greater the interrupt rate and total "hits" for
the profile. Both the addresses and interrupt rate must be
entered directly below the Xs.
8. Press any key to get the * prompt. Run the
program under test by:
RU,program name
9. The program will execute normally. When it

terminates, type:
BR,ACTV
This will terminate ACTV, and the activity profile will be

printed on the printer.
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Appendix F

This appendix contains listings for SDRVR, STRES, and
SPEED. SDRVR is a special driver program, which was
written by AFWAL/FIMN personnel, to test the wind tunnel
routines SDRVR and SPEED on the AFIT 21MX computer. SDRVR
and SPEED are the original subroutines used in the wind
tunnel control program. The routines here are presented
essentially as they were received from the user. They are

not well commented, and no attempt was made to improve

this,
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o 12 JUL 82
PROGRAM SDRVR
C
C
C
COMMON DDFL(13,13),IZTHM(1),CON1(1),CON6(1)
DIMENSION IBXNPS(10,18),IBXJAK(8),
*STRESS(14),Y2T(14),Y2T1(10)
REAL MOM(14)
DIMENSION DFL(13,13),DFL2(13,4),DFL3(13,3)
c
EQUIVALENCE (DFL(1,7),DFL2),(DFL(1,11),DFL3),
- 1 (YZT1,YZT(5))
;‘ C DATA DFL/
5 1 .2528E4,-.1750E4,.5417E3,~.4790E2,.1233E2,
- 1 -.2884El,.7545E0,-.2028E0, .5681E-1,~.1703E-1,
- 1 .4409E-2,-.1102E-2,.1837E-3,
- 2 -.1750E4,.1968E4,-.9478E3, .1805E3, . 4645E2,
- 2 .1087E2,-.2843El,.7644E0,-.2141E0,.6416E-1,
&) 2 -.1662E-1,.4154E-2,.6923E-3,
- 3 .5417E3,-.9478E3,.7798E3,-.3674E3,.1297E3,
3 -.3035E2,.7941E1,-.2135E1,.5979E0,~. 1792EOQ,
3 .4640E-1,-.1160E-1,.1933E-2,
4 -.4790E2,.1805E3,-.3674E3,.4015E3,-.2481E3,
4 .9002E2,-.2355E2,.6331El,-.1773ELl,.5315E0,
N 4 -.1376E0,.3441E-1,-.5734E-2,
S .1233E2,-.4646E2,.1297E3,~.2481E3,.2719E3,
5 -.1828E3,.8353E2,-.2247E2,.6293ELl,~-.1886El,
5 .4884E0,-.1221E0,.2035E-1,
6 -.2886E1,.1087E2,~.3035E2,.9002E2,-.1828E3,
6 .3075E3,-.2823E3,.1136E3,-.3181E2,.9533El,
6 -.2469E1l,.6172E0,~.1029E0/

DATA DFL2/
.7568E0,~.2845E1,.7942E1,~-.2355E2, .8358E2,
-.2823E3,.3976E3,~-.2682E3,.1144E3,-.3427E2,
.8876E1,-.2219E1,.3698E0,
-.2045E0,.7653E0,-.2135E1,.6331E1,-.2247E2,
.1136E3,-.2682E3,.3449E3,~.2705E3,.1231E3,
-.3187E2,.7968El,~.1328E1,
.5761E-1,-.2149E0,.5976E0,-.1772El, .6292E1,
-.3181E2,.1144E3,-.2705E3,.4069E3,~.3179E3,
.1186E3,-.2965E2,.4942E1,
-.1772E-1,.6570E-1,-.1800E0,.5307E0,~. 1885E1,
.9532E1,-.3427E2 ,.1231E3,-.3179E3,.4359E3,
-.3609E3,.1752E3,~.2921E2/

DATA DFL3/
.5690E~-2,~.1935E-1,.4937E-1,-.1388E0,.4870EO,
-.2465E1, .8871E1 ,-.3187E2,.1186E3,~.3609E3,
.6241E3,-.4961E3,.1394E3,
-.2199E-2,.6440E-2,~-.1477E-1,.3634E-1,-.1211E0
.6138E0,~-.2215E1,.7965EL,~-.2965E2,.1752E3,
-.4961E3, .5492E3,-.2049E3
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35

2000

3 .4995g-3,-.1367E~2,.3053E-2,~-.6550E-2,.2009E-1
3 -.1017E0,.3685E0,~-.1327E1,.4941E1,-.2921E2,

3 .1394E3,-.2049E3,.9083E2/

DATA IBXNPS/40%0,10*2423,2024,2064,2137,2234,2302,

LINES ADDED TO REPLACE READS OF DEVICES NOT AVAILABLE

* 2153,2021,1850,1686,1524/

IBXJAK(1)
IBXJAK(2)
IBXJAK(3)
IBXJAK(4)
IBXJAK(5)
IBXJAK(6)
IBXJAK(7)
IBXJAK(8)

2172
2365
2422
2000
2000
2000
0

0

DO 35 I=1,169

DDFL(I) =

CONTINUE

IZ2TdM=2000
CON1=5E-4

DFL(I)

CON6=5.4932E~4

DO 2000 IROD=5,6

CALL STRES(1,IROD,IBXJAK,IBXNPS(1l,IROD),STRESS,MOM)
= 2000
2000
2000

IBXJAK(L)

IBXJAK(2)

IBXJAK(3)
CONTINUE
END
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SUBROUTINE STRES(IFCN,KIROD,IBXJAK,IDATA, STRESS,MOM,
* IZXNPP)

FCN=1 FOR THUMWHEEL
FCN=2 FOR POTS
LAST PARAMETER IS NOT REQUIRED FOR THUMWHEELS

OO0

COMMON DDFL(13,13),IZTHM(1),CON1(1),CON6(1)
DIMENSION IBXJAK(8),STRESS(14),Y2T(14),YZT1(10),
*IDATA(10),IBXNPP(10)

REAL JACK(14),LOAD(14),MOM(14)

EQUIVALENCE (YZ2T1,YZT(5))

DATA JACK/O0.,6.,11,,16.,21.,26.,31.,33.5,36.,38.5,41.,
*44.69,48.38,52.07/

YZT(1)=0

IF (IFCN.EQ.3) GO TO 3000

IF (KIROD.GT.9) GO TO 100

Y2T(2)= (IBXJAK(1l)-IZTHM)* CON1

YZT(3)= (IBXJAK(2)-IZTHM)* CON1

YZT(4)= (IBXJAK(3)-IZTHM)* CONl

GO TO 200

100 YZ2T(2)= (IBXJAK(4)-IZTHM)* CON1
YZT(3)= (IBXJAK(5)-IZTHM)* CONl
YZT(4)= (IBXJAK(6)-IZTHM)* CON1
200 CONTINUE
IF (IFCN.EQ.2) GO TO 2000
1000 pO 1050 1=1,10

1050 YZT1(I)= (IDATA(I)~IZTHM)* CONl
1500 CALL SPEED(LOAD,MOM, STRESS,YZT,JACK)
RETURN

2000 DO 2050 1I=1,10

2050 YZT1(I)= (IDATA(I)-IZXNPP(I))* CON6
CALL SPEED(LOAD,MOM, STRESS, YZT,JACK)
RETURN

3000 CALL SPEED(LOAD,MOM, STRESS,YZT,JACK)
RETURN
END
ENDS$S
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L ASMB, L
o NAM SPEED,7
= EXT .ENTR
3! ENT SPEED
o COM DDFL(338)
- LOAD BSS 1
- MOM BSS 1
- STRES BSS 1
YZT BSS 1
JACK BSS 1
SPEED NOP
JSB .ENTR
DEF LOAD
LDA LOAD
INA
INA
STA .LOD1
STA .LOD2
STA .LOD3
STA .LOD4
LDA YZT
INA
INA
STA .YZT
LDA JACK
INA
INA
STA .JCK1
STA .JCK2
STA .JCK4
LDA MOM
STA .MOM1
STA ..A
INA
INA
STA .MOM3
LDA ..DFL
STA .DDFL
* COMPUTE RESULTS BASED ON DEFLECTIONS ALONE
* FIND LOADS
LDA =D-13
STA CNT2
LOOP2 LDA .YZT
STA ..Y2T

DLD .DDFL,I
OCT 105040 FMP

.Y4T BSS 1

DST .LOD1,I
ISZ ..YZT
ISZ ..YZT
ISZ .DDFL
ISZ .DDFL
LDA =D-12
STA CNT1
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LOOP1

..YZT

T 1001

LOOP3
.LOD2

LOOP4
.LOD3

. MOM1

- Loopr5

.L.OD4

DLD
ocT
BSS
OCT
BSS
DST
ISZ
ISZ
ISZ
1S2
1587
JMP
IS%
152
ISZ
JMP

.DDFL, I
105040
1

10500

1
.LOD1,I
. YZT
..YZT
.DDFL
.DDFL
CNT1
Loorl
.LOD1
.LOD1
CNT2
LOOP2

FMP

FAD

FIND MOMENT DISTRIBUTION AT JACKS

LDA
STA
CLA
CLB
ocCT
BSS
ISZ
I1S2
ISz
JMP
DST
CLA
CLB
DST
LDA
STA
DLD
ocT
BSS
ocT
BSS
DST
ISZ
152
IS2
IS%
ISZ
JMP
DLD
DST
DLD
DST
LDA
STA
DLD
oCcT
BSS

=D-13
CNT1

105020
1
.LOD2
.LOD2
CNT1
LOOP3
Loap,1

.MOM1.I
=D-13
CNT2
.JCKA,I
105040
1
105000
1
.MOM1,1
.JCK1
.JCK1
.LOD3
.LOD3
CNT2
LOOP4
Loap,1I1
TEMP1
MOM, I
TEMP2
=D-12
CNT1
TEMP1
10500

1

FSB

FMP

FAD

FAD
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e

g DST TEMP1
- - DLD .LOD4,I
WS -— OCT 105040 FMP
3 .JCK4 BSS 1
i DST 'TEMP3
o DLD TEMP2
L OCT 105020 FSB
. DEF TEMP3
DST TEMP2
DLD .JCK4,1
L OCT 105040 FMP
[ DEF TEMP1l
OCT 105000 FAD
- DEF TEMP2
‘ DST .MOM3,1
| ISZ .MOM3
= ISZ .MOM3
A ISZ .LOD4
ISZ .LOD4
ISZ .JCK4
ISZ .JCK4
ISZ CNT1
JMP LOOPS
* STRESS AT JACK CENTERLINE AND WALL
LDA .MP
STA ..M
: LDA STRES
Qﬁf STA ..S
LDA =D-13
STA CNT2
LOOP7 DLD ..A,I
1S%2 ..A
ISZ ..A
SSA
s CMA, INA
. OCT 105040 FMP
- ..M BSs 1
o DST ..S,1
:,. ISZ ..S
gl IS% ..S
ISZ2 ..M
ISz ..M
ISZ CNT2
JMP LOOP7
JMP SPEED,I
E ..DFL BSS 1
o .JCK1 BSS
- .JCK2 BSS
N .JCK3 BSS
- .MOM3 BSS
® CNT1 BSS
o CNT2 BSS
- . ..A BSS
ot ..S BSS

Ak R a-sair
' . .

e e
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SR i—
L . . R

SN Y, SO

.MP DEF
Mp DEC
DEC
DEC
DEC
TEMP1 BSS
TEMP2 BSS
TEMP3 BSS
END

MpP
148.63,148.63,148.63
594.5,594.5,594.5

2378.,2378.,2378.,2378.

2378.,594.5,594.5
2

2

2

SPEED
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Appendix G

This appendix contains listings for MSPED and LOADS.
MSPED is a version of SPEED modified to invoke a
microprogram substitution for LOOP1 and LOOP2 of SPEED.
Only the code up to and including the modifications are
shown here., The remainder of the code is as in the SPEED
listing of Appendix F. Also, the program name remains as
"SPEED" to minimize changes to calling routines. Only the

.- file names are changed to MSPED. LOADS is the microprogram
%ﬂ subsitution for LOOPl1 and LOOP2.

e

141

e e T i o e imian e i ket et o Al




ASMB, L
NAM SPEED,7

EXT .ENTR
ENT SPEED
COM DDFL(338)
LOAD BSS 1
MOM BSS 1
STRES BSS 1
YzT BSS 1
JACK BSS 1
SPEED NOP
JSB .ENTR
DEF LOAD
LDA LOAD
INA
INA
STA .LOD1
STA .LODZ2
STA .LOD3
STA .LOD4
LDA YZT
INA
INA
STA .YZT
LDA JACK
INA
INA
STA .JCK1
STA .JCK2
STA .JCK4
LDA MOM
STA .MOM1
STA ..A
INA
INA
STA .MOM3
LDA ..DFL
STA .DDFL
* COMPUTE RESULTS BASED ON DEFLECTIONS ALONE
* FIND LOADS BY INVOKING THE LOADS MICROPROGRAM

LOADS OCT 105600
.DDFL BSS 1

.YZT BSS 1
.LOD1 BSS 1
* FIND MOMENT DISTRIBUTION AT JACKS

. THE CODE HERE IS IDENTICAL TO SPEED

END SPEED
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MICMX,L,R 21MX
$CODE=%LOADS::20,REPLACE OBJECT TO DISK

ORG 6000B
ARRKKRRAKRRAKRRKKRR AR KRR KRR AR R kAR Rk ARk kAR hhkkhkh Ak kh*

LOADS MICROPROGRAM

THIS MICROPROGRAM IS A SUBSTITUTE FOR THE ASSEMBLY
LANGUAGE CODE SEGMENT LABELED LOOPZ2 IN THE ROUTINE
CALLED SPEED. WITH THIS ROUTINE WRITTEN INTO WCS,
THE LOOPZ2 CODE SEGMENT IN SPEED (FROM THE LABEL
"LOOP2" TO THE "JMP LOOP2" INSTRUCTION) CAN BE
REPLACED BY THE FOLLOWING INSTRUCTIONS:

LOADS OCT 105600 CALL THE LOADS MICROPROGRAM
.DDFL BSS 1 ADDRESS OF THE DDFL ARRAY
.Yz2T BSS 1 ADDRESS OF THE YZT ARRAY
.LODL BSS 1 ADDRESS Of THE LOAD ARRAY

* % % N N ¥ X * ¥ * F ¥ *
% % N % * ¥ * % X X ¥ ¥ % ¥ *

*

*NOTE THAT .DDFL, .YZT, AND .LOD1l ARE ALREADY DEFINED*
*IN SPEED. THEY MUST BE MOVED TO THE LINES FOLLOWING ¥*
*THE "LOADS OCT 105600" INSTRUCTION AS SHOWN ABOVE. *
*THE ORDER IS IMPORTANT AS THESE ARE PARAMETERS FOR *

*THE MICROPROGRAM. *
* *

Khkhkhkhkhkhkhhhkhhkhkhkhhhkhkhkkkhkkkkhkkkkhhkkhkhkkhhkhkkhkhkkhkhkkhhkhkhkkkk

FLD EQU $7031 ROM FLT PNT LOAD ROUTINE
PACK EQU $7052 ROM FLT PNT PACK ROUTINE
START JMP LOADS JUMP TO MAIN MICROPROGRAM

ORG 60028 USE 6001B FOR DEBUG BKPNT

hkkhkhkhkhhhkhkhhkhkhkhhkkhhkkhhhkhhhkkhkkhkkhhkkhhkkhkkhkhhkkhkhkkhhkkkkkk

* READ CALLING PARAMETERS FROM MEMORY AND STORE IN *
* SCRATCH REGISTERS: .DDFL --> 83 *
* YZT ~--> Sl2 *
* .LOD1 --> S8 *

»

ALSO INITIALIZE OUTER LOOP COUNTER REGISTER X TO 13*
KRR KRR KRR KRR RRRRRRRRRRRR R AR hkkk ko ke ke ok

LOADS READ INC M P READ DDFL ADDR FROM MEMORY
INC P P POINT TO YZT ADDRESS
PASS S3 TAB PUT DDFL ADDRESS INTO S3
READ INC M P READ YZT ADDR FROM MEMORY
INC P P POINT TO LOAD ARRAY ADDR
PASS S12 TAB PUT YZT ADDRESS INTO S12
READ INC M P READ LOAD ADDR FROM MEMORY
IMM CMLO X %362 LOOP2 CNIR=13(l'S CMP 362)
PASS S8 TAB PUT LOAD ADDRESS INTO S8
LA AR EERAEE SRR R R YRR SRR R R RRRSR R RS R X R R
* MATRIX MULTIPLICATION LOOP ~- THIS CODE SEGMENT *
* PERFORMS THE FLOATING POINT MATRIX MULTIPLICATION *
* OF THE 13X13 DDFL MATRIX BY THE 14Xl YZT MATRIX. *
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Rl " I Brti e e Shinsd

THE FIRST ELEMENT OF THE YZT MATRIX IS NOT USED, *
MAKING IT EFFECTIVELY A 13X1 MATRIX. THE RESULT OF *

THE 14X1 MATRIX CALLED*

LOAD (1ST ELEMENT AGAIN NOT USED). *

*
*
* THE MATRIX MULTIPLICATION IS
*
*

PUT A ZERO IN A-REG

PUT LOAD ADDR INTO M-REG
CLEAR WORD1l OF LOAD ELEMNT
POINT B TO WORDZ2 OF LOAD

& PUT ADDR INTO M-REG
CLEAR WORD2 OF LOAD ELEMNT
LOOP1l CNTR=13(1'S CMP 362)
PUT YZT ADDR INTO S4

READ 1ST WORD DDFL ELEMENT
POINT TO 2ND DDFL WORD

PUT 1ST WORD INTO A-REG
READ 2ND WORD OF DDFL
POINT TO NEXT DDFL ELEMENT

RAKKRARKRKRRR A KRR R KA KR RR KA KRR R KRR AR AR R AR KRR Ak kA ARk k k%
Loor2 IMM CMLO A $377
MPCK INC M S8
WRTE PASS TAB A
INC B S8
MPCK INC M B
WRTE PASS TAB A
iMM CMLO Y $362
PASS S4 sSl2
LOOP1 READ INC M S3
INC S3 83
PASS A TAB
READ INC M s3
INC S3 s3
PASS B TAB

PUT 2ND WORD INTO B-REG

Ahkkhkhhhkkkhkhkhkhkhhhhkhkkhkkhkhkhkkkxhkhkhkkhhhkhkrhhhkhkhkhkhkkkhkhkkk

* "JMP" RATHER THAN "JSB"

TO FMPY AND FADD ROUTINES *

* BECAUSE THESE ROUTINES WILL DESTROY TH RETURN *
* ADDRESS BY CALLING OTHER ROUTINES. RETURN IS TO THE*

* INSTRUCTIONS LABELED

AND "RTNFADD" *

khkkhkhkhhkhkhkhkhkhkhhkhkkhkhkhhkhhkhkhkhkkhkhhkhkhkhhkhhkhkhkhkhkhkkkhhkkhhkkkkkkk

JMP
*

RTNFMPY JMP
*

RTNFADD MPCK INC
PASS

INC

MPCK INC
PASS

DEC

INC

INC

DEC

JMP CNDX TBZ
INC

INC

DEC

JMP CNDX TBZ
RTN INC

WRTE

WRTE

"RTNFMPY"
FMPY
FADD

M S8
TAB A

s8 S8

M S8
TAB B

S8 s8

sS4 54

sS4 sS4

Y Y

RJS LOOP1
s8 s8

S8 S8

X X

RJS LOOP2
P P

MULTIPLY DDFL&YZT ELEMENTS
PRODUCT GOES INTO A/B REGS
ADD DDFL&YZT PROD TO LOAD
SUM GOES INTO A/B REGS

PUT LOAD ADDR INTO M-REG
WRITE A-REG TO LOAD ADDR
POINT TO 2ND WORD OF LOAD
PUT ADDRESS INTO M-REG
WRITE B-REG TO 2ND WORD
POINT BACK TO 1ST WORD
POINT TO NEXT YZT WORD

DECREMENT LOOPl COUNTER
IF CNTR NOT=0 GO Tv LOOP1l
POINT TO NEXT LOAD ELEMENT

DECREMENT LOOP2 COUNTER
IF CNTR NOT=0 GO TO LOOP2
RETURN TO SPEED

KAKRkRARRRRRRA ARk hkhkkhkhkhhhkhkhkhkhkkhhhkhkkhkhhhkhkhkkhhhkhkkkki

* % % ¥ % ¥ *
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FLOATING POINT MULTIPLY AND MULTIPLY (MPYX) *
ROUTINES. THESE ROUTINES ARE TAKEN FROM APPENDIX E *
OF THE HP MICROPROGRAMMING 21MX COMPUTERS OPERATING*
AND REFERENCE MANUAL. THESE ROUTINES ALSO RESIDE IN*
CONTROL STORE ROM, BUT IT IS NECESSARY TO REPRODUCE*
THEM IN WCS TO AVOID THE PROBLEM OF LEVELED SUB- *

ROUTINE CALLS IN THE M~SERIES. FMPY HAS BEEN MODI- *
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* FIED SLIGHTLY TO HANDLE A PARAMETER ADDRESS IN A  *
* SCRATCH REGISTER RATHER THAN POINTED AT BY THE P *
* REGISTER (PROGRAM COUNTER). ALSO, INDIRECT ADDRES- *
* SING IS NOT USED. MPYX IS UNCHANGED. *
KARKRKAKKRIEKAKRKKRKRKRKRRIRRKRRR R KA AR RA AR Ak A RA Ak A kA Rkhkhkkkk
FMPY READ INC M S4 READ 1ST PARAMETER WORD
JSB FLD STORE ARGS IN SCRATCH REGS
INC s9 S9
PASS L S5 FORM EXPL+EXP2+1
ADD S9 S9 AND SAVE IN S9
R1 PASS A  S10 FORM (WORD1l LOBITS)/2 IN A
PASS S2 S7 PASS WORD2 HIBITS INTO S2
JSB MPYX JMP TO MPY SUB & RTN WITH
PASS S5 B HIBITS IN B & SAVE IN S5
PASS S2 Sll PASS WORD1 HIBITS INTO S2
PASS S11 A LOBITS INTO A. SAVE INTO S
Rl PASS A  S6 FORM (WORD2 LOBITS)/2 IN A
JSB MPYX JMP TO MPY SUB & RTN WITH
PASS L A LOBITS IN A & PASS INTO L
ADD A Sl1 ADD BOTH LOBITS. CHK FOR C
JMP CNDX COUT RJS *+2 (ELSE TRUNCATE DIGITS)
INC B B8 IF COUT, BUMP HIBITS
PASS L B ADD HIBITS & SAVE IN S11
ADD sl1l S5
PASS A S7 PASS WORD2 HIBITS INTO A
JSB MPYX JMP TO MPY SUB & RTN WITd
RL PASS A A LOBITS IN A. SAVE LOBITS/2
COV PASS L A ADD LOBITS/2 TO HIBITS SUM
ENV L1 ADD A Sll SHIFT L1 TO REORIENT
JMP CNDX ALLl5 RJS *+3 CHECK FOR CAK. 7 INTO OR
JMP CNDX OVFL *+4 BORROW FROM HIBITS &
DEC B B ADJUST ACCORDINGLY
JsB PACK
JMP RTNFMPY RTN TO MAIN MICROPROGRAM
INC B B CAN'T OVERFLOW FROM HIBITS
JSB PACK
JMP RTNFMPY RTN TO MAIN MICROPROGRAM
MPYX COV PASS S1 A S1<-A(MULTIPLICAND). CLEAR
ZERO B CLEAR B FOR MULTIPLY
PASS L  S2 L<-S2(MULTIPLIER)
RPT PASS CNTR B CLEAR COUNTER & SET REPEAT
MPY Rl aDD B B MPY STEP (X16), (B,A)<-*L+
PASS sl TEST MULTIPLICAND
JMP CNDX AL15 RJS *+2 JUMP (F POSITIVE
SUB B B UNDO LAST MPY STEP IF NEG
PASS S2 TEST MULTIPLIER
JMP CNDX AL15 RJS RETURN JMP IF POSITIVE
PASS L sl L<-MULTIPLICAND
RIN SUB B B B<-MINUS L (CORRECTS NEG
* MULT)
RETURN RTN RETURN TO CALLING ROUTINE
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' 2 2222222223 XX22222XZ2 22222222222t 2t i xRt R RS2

* FLOATING POINT ADD ROUTINE. THIS ROUTINE IS ALSO *
* TAKEN FROM APPENDIX E OF THE HP MICROPROGRAMMING *
* 21MX COMPUTERS OPERATING AND REFERENCE MANUAL. IT *
* ALSO RESIDES IN CONTROL STORE ROM BUT IS DUPLICATED*
* IN WCS TO AVOID THE PROBLEM OF LEVELED SUBROUTINE *
* CALLS IN THE M-SERIES. FADD HAS BEEN MODIFIED TO *
* EXCLUDE THE CODE FOR FLOATING POINT SUBTRACT AND TO*
* ALLOW A PARAMETER ADDRESS IN A SCRATCH REGISTER *
* RATHER THAN THE P REGISTER. INDIRECT ADDRESSING IS *
* NOT USED, SO THE CALL TO "INDIRECT" IS OMITTED. *
* ALSO, SCRATCH REGISTER S2 IS USED IN PLACE OF S8 TO*
*
*

FREE S8 FOR USE IN THE MAIN PROGRAM. *
KRR RRRA AR RRKRR RNk Ik hkhhhhhk kR khkkkAkAxARhhAhk

FADD READ INC M S8 READ 1ST PARAMETER WORD
JSB FLD UNPACK WORDS INTO SCR REGS
PASS B S7 CHECK FOR WORD2=0
JMP CNDX TBZ RJS *+2 IF NOT, CONTINUE
IMM LOW S5 %200 IF SO, MAKE EXP MOST NEG
PASS sll CHECK FOR WORD1=0
JMP CNDX TBZ RJS *+2 IF NOT, CONTINUE
IMM LOW S9 %200 IF SO, MAKE EXP MOST NEG
DIFR PASS A  S6
PAS L S5 FIND DIFF IN EXPS
_ CLFL SUB S2 S9 & STORs IN S2, FLAG=0
o JMP CNDX TBZ ADD2 IF DIFF=0, JMP TO ADD STZP
- JMP CNDX AL1S RVRS IF NEG, WORD2>WORD1
CMPS S2 S2 FORM -DIFF
INC S2 S2 & STORE -DIFF IN S2
JMP SWAMPCHK
RVRS PASS L. B HOLD B IN L
PASS B Sl1l WORD1<WORD2, F1LL IN B,A
PASS A SL0 WITH S11,S10
PASL Sl11 ALSO FILL S11,S10,S9
PASS S10 S6 WITH B,S6,S5
PASS S9 S5
SWAMPCHK IMM LOW L %350 FORM -30B8 IN L
SUB S2 IF -DIFF>-31,RTN WITH
* LARGER #
JMP CNDX AL15 ouT JMP TO RESTORE A,B
SHIFT ARS Rl PASS B B NOW START SHIFT LOOP
INC 82 S2 INC COUNTER
JMP CNDX TBZ RJS SHIFT LOOP UNTIL DONE
ADD2 CoV PASS L  slo0 PASS LOBITS INTO L
ADD A A ADD & CHECK FOR COUT
JMP CNDX COUT RJS *+3 IF NOT, JUMP
IMM HIGH L %0 CLR L(15) FOR OVFL
ENV INC B B IF SO,INC HIBITS & ENABLE
* OVERFLOW
CLFL PASS L  Sl1 FLAG=0
- ENV ADD B B ADD HIBITS & ENABLE OVFL
e JMP CNDX OVFL RJS PKSUB IF NO OVFL, RETURN
JMP CNDX ALLS *42 OVFL IMPLIES SIGN CHANGE
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[T A

PKSUB

ouTt
*

U S W WY SO W S S

LWF
LWF

JSB
JMP

JSB
JMP
END

STFL
R1
Rl

PASS B
PASS A

INC S9

PASS B

PASS A

SO FLAG=U IF AL1l5=0

B DO FULL WORD SHIFT

A USING FLAG REG TO INJECT
SIGN

s9 BUMP EXP

PACK REPACK A,B REGS
RTNFADD RTN TO MAIN MICROPROGRAM

S11 PASS MUCH LARGER WORD INTO
B,A

s10

PACK

RTNFADD RTN TO MAIN MICROPROGRAM
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Appendix H

This appendix contains the listing for WCSLD. This
program was used to load the LOADS microprogram into WCS on
the AFWAL/FIMN HP 21MX. The microprogram object code is
predefined in a buffer, and the buffer is output to the WCS
two words at a time. The program was run under a DOS III
operating system which had not been configured for
microprogramming. The program will not run on the AFIT RTE
III system because of the installed memory protect option.
The direct I/0 instructions (STF, STC, OTA, OT8, LIA, LIB)

cause memory protect viclations.
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At e LI M A AR A = - AR Sl A

ASMB, L

Z0U) % % % F % % X % N X H X ¥ ¥ * %

*
*
*

NAM WCSLD, 3
ENT WCSLD

WCSLD WRITES A BUFFER CONTAINING PRESTORED MICROCODE 0OUT
TO WCS. ONCE THE MICROCODE IS WRITTEN TO WCS, THE PROGRAM
READS THE MICROCODE FROM WCS, COMPARES IT WITH THE CODE
THAT WAS OUTPUT, AND WRITES THE INPUT CODE INTO ANOTHER
BUFFER. IF A WORD DOES NOT COMPARE, AN ERROR COUNTER IS
INCREMENTED. THE MICROCODE IS WRITTEN OUT 2 WORDS AT A
TIME. THE UPPER 8 BITS OF THE A~REG CONTAINS THE WCS
ADDRESS (0-377B8), AND THE LOWER 8 BITS OF THE A-REG
CONTAINS THE UPPER 8 BITS OF THE MICROWORD. READING IS ALSO
DONE 2 WORDS AT A TIME. THE WCS ADDRESS IS FIRST OUTPUT TO
THE BOARD, AND THEN THE MICROWORD AT THAT ADDRESS IS READ
IN. THE ADDRESS IS NOT READ BACK IN.

EQU 10B WCS SELECT CODE

CSLD NOP

STF SC INIT DIRECTION FF
LDA =B-206 # OF MICROWORDS IN BUFFER
STA CNT

WRITE MICROWORDS OUT TO WCS

WRLP DLD .0OBF1l,I WRITE LOOP

*

*
*

IOR WCSAD "OR" IN WCS ADDRESS
OTA SC OUTPUT MICROWORDS
or8 sC

STC SC WRITE PULSE

ISZ .OBFl POINT TO NEXT MICROWORD
ISZ .OBFl

LDA WCSAD

ADA =B400 BUMP WCS ADDR BY 1
STA WCSAD

ISZ CNT

JMP WRLP

NOW READ THE MICROCODE BACK IN AND COMPARE

CLA 1ST WCS ADDRESS = 0
STA WCSAD
LDA =B-206
STA CNT
RDLP STF SC INIT DIRECTION FF
LDA WCSAD GET WCS ADDRESS
OTA SC OUTPUT ADDRESS TO WCS
STH SC REINIT FF
LIA SC INPUT MICROWORD
LIB SC
CPA .OBF2,I DO COMPARES
JMP BCOMP
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A

!
AT

T TTY
‘e

P A

BCOMP

STWRD

*
*

CNT

WCSAD
ERCNT
. IBF
.OBF1l
.OBF2

182
IS5z
Ci -t
JMp
ISz
DST
ISZ
ISz
1Sz
LDA
ADA
STA
ISz
JMP

ocT
OCT
oCcT
DEF
DEF
DEF

* START OF

OBUFF

oct
oCT
OCT
oct
ocT
oct
ocT
oCT
ocCT
ocT
OCT
ocr
OCT
ocT
ocT
ocT
OoCT
ocT
OCT
oCT
ocT
ocT
OoCcT
oCT
ocT
ocT
ocrT
ocT
OoCT
ocT
ocT

ERCNT BUMP ERROR COUNT
.OBF2 POINT TO 2ND WORD
.0OBF2,I

STWRD

ERCNT BUMP ERROR COUNT
.IBF,1 STORE MICROWORDS

. IBF POINT TO NEXT POSITION
. IBF

.OBF2

WCSAD GET WCS ADDRESS

=B400 BUMP IT BY 1

WCSAD

CNT

RDLP

0 LOOP COUNTER

0 WCS ADDRESS

0 ERROR COUNTER

IBUFF INPUT BUFFER ADDRESS
OBUFF OUTPUT BUFFER ADDRESS
OBUFF ANOTHER ONE

"LOADS" MICROCODE

321,100130,301,170351,220,074457
000,075717,017,101117,220,074457
000,075717,017,101557,220,074457
357,145617,017,101357,357,176557
000,056461,177,126017,000,056517
000,024461,177,126017,357,145657
017,167157,220,044457,000,045117
017,100557,220,044457,000,045117
017,100517,321,102530,321,105370
000,056461,177,126017,000,057357
000,056461,177,124017,007,157357
000,047157,000,047157,007,173657
320,001171,000,057357,000,057357
007,171617,320,000571,000,075736
220,046457,301,141470,000,061417
017,150157,004,161417,017,162544
017,155057,301,104530,017,125217
017,165057,017,127517,017,152544
301,104530,017,126157,004,164557
321,003571,000,024517,017,124157
004,151517,017,154557,301,104530
017,126544,017,126154,244,164542
322,004271,325,044371,007,124517
301,142530,321,101530,000,024517
301,142530,321,101530,017,127014
001,136517,017,142157,017,124255
014,124504,017,140757,322,005131
003,024517,017,142757,322,005331
017,140157,003,024536,017,136776
220,056457,301,141470,017,154517
320,005631,346,001217,017,164757

150

B S RROE S S U0 VA VRNE S STV WIC N6 P - 2 P UL+ e a

o /Ani S Mt S e de e gn

—




OCT
OoCT
OoCT
oCT
OoCT
ocT
ocT
oCT
OCT
ocT
OCT
: ocT
o oCcT

ocT
* END OF
IBUFF BSS

END

L g " S S A A Sl Dihel Talhe: N NED: T
e et B ". "' .l‘l . P
. a0 . P .

320,005771,346,001417,017,152557
017,150157,003,061051,320,047171
322,046371,010,043057,000,043057
321,106670,017,124157,017,164517
017,162557,015,037517,017,153457
017,151417,347,120157,003,042757
322,050131,037,124504,000,043057
320,007G631,017,162154,004,126557
321,007431,340,000157,240,024517
017,164151,244,124517,325,001031
322,047671,017,136750,157,124504
157,126544,000,061417,301,142530
321,101570,017,164517,017,162557

301,142530,321,101570
"LOADS" MICROCODE
414B INPUT BUFFER
WCSLD
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Appendix I

This appendix contains listings for CDRVR and CALC.

CDRVR 1is a special driver program, which was written to

test the laser materials modeling program routine CALC on
the AFIT 21MX computer. CDRVR provides all the inputs to
CALC which would normally come from a potentiometer board

on the AFWAL/MLPJ computer.
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6 AUG 82
PROGRAM CDRVR

CDRVR IS A TEST DRIVER PROGRAM FOR THE SUBROUTINE CrLC, A
ROUTINE WHICH CALCULATES THE REAL AND IMAGINARY PARTS OF
REFRACTIVE INDEX, A CHARACTERISTIC MEASURE OF LASER
MATERIALS. CDRVR IS USED TO DRIVE CALC ONLY FOR THE
PURPOSE OF MAKING TIMING MEASUREMENTS ON CALC. CALC IS ONE
ROUTINE OF SEVERAL USED IN A LASER MODELING PROGRAM
DEVELOPED BY AFWAL/MLPJ.

COMMON IXO(150),IYO0(150),B(30),G(30),IA(30),IQ(20)
REAL BB(30),F,N,K
INTEGER I,JdJ

B(30) -- AN ARRAY CONTAINING PARAMETERS NORMALLY INPUT
FROM A 30-POT POTENTIOMETER BOARD
N -- THE REAL PART OF THE REFRACTIVE INDEX
K -- THE IMAGINARY PART OF THE REFRACTIVE INDEX
F —-- RADIATION FREQUENCY
JJ —-- THE NUMBER OF OSCILLATORS USED IN THE REFRACTIVE
INDEX CALCULATION

DATA BB/1.0,800.0,1.0,1.0,800.0,1.0,1.0,800.0,1.0,
*1l.,0,800.0,1.0,x.0,800.0,1.0,1.0,800.0,1.0,1.0,800.0,
*1.0,1.0,800.0,1.0,0.0,400.0,100.0,2.0,0.5,0.0

DATA JJ/8

COPY DATA FROM DUMMY BB ARRAY TO B ARRAY IN COMMON AREA
DO 50 1=1,30
B(I)=BB(I)

50 CONTINUE

PERFORM CALCULATIONS FOR FREQUENCIES FROM 1000 TO 200 IN
STEPS OF 40 TO MAKE APPROXIMATELY 20 CALCULATIONS.

pO 100 1=1000,200,~40
F=1.0*]
CALL CALC(B,JJ,¥,N,K)
WRITE(10,200)F,N,K

200 FORMAT(F20.9, 2X,F20.9,2X,F20.9)
100 CONTINUE

END
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SUBROUTINE CALC(B,JJ,F,Cl1l,Cl2)

SUBROUTINE CALC CALCULATES THE REAL AND IMAGINARY PARTS OF
THE REFRACTIVE INDEX OF A LASER MATERIAL SIMULATED BY
PARAMETERS INPUT FROM A POTENTIOMETER BOARD. THE
CALCULATION IS PERFORMED BY EVALUATING EQUATIONS FOR

(N*N - K*K) AND (2*N*K) AND THEN SOLVING THESE TWO
EQUATIONS SIMULTANEOUSLY FOR N AND K (Cll AND Cl2)..

o000

i! COMMON IX0(150),IY0(150),B(30)
REAL C1,c2,C3,c4,C5,C6,C7,C8,C9,C10,C11,C12,C13
INTEGER F2,J1,32,J3

Cl-Ccl3 -~ USED FOR INTERIM RESULTS IN EVALUATICON OF THE
TWO LONG EQUATIONS
F2 -- FREQUENCY (F) SQUARED
J1-J3 -~ INDICES OF ARRAY B USED TO PICK OUT THREE
DIFFERENT PARAMETERS -~ DAMPING FACTOR, FREQUENCY
OF RESONANCE OF THE ITH OSCILLATOR, AND STRENGTH
OF RESONANCE

OO0

F2=F*F

C5=0.0

C6=0.0

DO 100 J=1,3J
J3=J*3
J2=J1-1
J1l=32~1
Cl=B(JL1)*F
C2=B(J2)*B(J2)
C3=C2-F2
C4=(B(J3)*C2)/(C3*C3+C1*C1)
C5=C5+C3*C4
C6=C6+Cl*C4

100 CONTINUE

o]

C7=B(27)*B(27)+4F2
C8=B(26)*B(26)

C CY9=N*N-K*K
C9=B(28)+C6-B(29)*C8/C7

C CLlO=2*N*K
Cl0=C6+B(29)*B(27)*C8/(F*C7)

C NOW SOLVE THESE 2 EQUATIONS FOR N AND K (Cl2 AND C13)
C1ll=0.5*(~C9+SQRT(C9*C9+C1l0*C10))
Cl12=SQRT(C9+C1l1l)

Cl3=SQRT(C1ll)
RETURN

END

ENDS
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Appendix J
This appendix contains listings for CALC, ACALC, and
MCALC. The CALC in this listing is the same as in Appendix
I except that the DO loop has been replaced by a call to
ACALC. ACALC is an assembly language program which
interfaces CALC to MCALC. MCALC is the microprogram which
performs the function previously performed by the DO loop.

CALC is again driven by CDRVR as shown in Appendix I.
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SUBROUTINE CALC(B,JJ,F,Cll1l,Cl1l2)

SUBROUTINE CALC CALCULATES THE REAL AND IMAGINARY PARTS OF
THE REFRACTIVE INDEX OF A LASER MATERIAL SIMULATED BY
PARAMETERS INPUT FROM A POTENTIOMETER BOARD. THE
CALCULATION IS PERFORMED BY EVALUATING EQUATIONS FOR

(N*N - K*K) AND (2*N*K) AND THEN SOLVING THESE TWO
EQUATIONS SIMULTANEOUSLY FOR N AND K (Cll AND Cl2)..

COMMON IXO(150),IY0(150),B(30)
REAL C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C11,C12,C13,F2
INTEGER J1,J2,J03

Cl-Cl3 -- USED FOR INTERIM RESULTS IN EVALUATION OF THE
TWO LONG EQUATIONS
F2 -- FREQUENCY (F) SQUARED
J1-J3 -- INDICES OF ARRAY B USED TO PICK OUT THREE
DIFFERENT PARAMETERS -~- DAMPING FACTOR, FREQUENCY
OF RESONANCE OF THE ITH OSCILLATOR, AND STRENGTH
OF RESONANCE

EVALUATE THE TWO EQUATIONS OVER JJ OSCILLATORS.
THIS IS DONE BY MICROPROGRAM MCALC WHICH IS INVOKED
BY THE ASSEMBLY LANGUAGE ROUTINE ACALC. RESULTS ARE
RETURNED IN C5 AND C6.

F2=F*F

C5=0.0

C6=0.0

CALL ACALC(JJ,F,F2,C5,C6)

C7=B(27)*B(27)+F2

C8=B(26)*B(26)

C9=N*N-K*K
C9=B(28)+C6-B(29)*C8/C7
Cl0=2*N*K

Cl0=C6+B(29)*B(27)*C8/(F*C7)

NOW SOLVE THESE 2 EQUATIONS FOR N AND K (Cl2 AND C13)
Cl1=0.5*(-C9+SQRT(C9*C9+C10*C10))
Cl2=SQRT(C9+Cll)

Cl3=SQRT(C1ll)
RETURN

END

ENDS
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r. .
- ASMB,L
- NAM ACALC,7
- EXT .ENTR
f! ENT ACALC
3 COM IXO(150),IY0(150),B(60)
& .JJ BSS 1
o ..F BSSs 1
x ..F2 BSS 1
..C5 BSS 1
..C6 BSs 1
ACALC NOP
JSB .ENTR
DEF .JJ
DLD ..F GET F AND F2 ADDRESSES
DST .F COPY INTO .F AND .F2
DLD ..C5 GET C5 AND C6 ADDRESSES
DST .C5 COPY INTO .C5 AND .C6
LDX .B PUT B ARRAY ADDRESS INTO X-REG
LDY .JJ,1I PUT JJ INTO Y FOR LOOP COUNT IN MCALC
LDA .TMPL PUT TMP1 ADDRESS INTO A-REG
LDA .TMP2 PUT TMP2 ADDRESS INTO B-REG
MCALl OCT 105620 INVOKE MCALC AT 1ST ENTRY POINT
F BSS 1 ADDRESS OF PARAMETER F
LF2 BSS 1 ADDRESS OF PARAMETER F2
FDIV  OCT 105060 INVOKE FLT PNT DIVIDE ROM ROUTINE
.ClC3 DEF clc3 ARGUMENT FOR FDV
e MCAL2 OCT 105621 INVOKE MCALC AT 2ND ENTRY POINT
\ .C5 BSS 1 OUTPUT PARAMETERS OF MCALC
.C6 BSS 1
JMP ACALC,I  RETURN TO CALC
.B DEF B ADDRESS OF B ARRAY
.TMP1 DEF TMPl ADDRESS OF TMP1
.TMP2 DEF TMP2 ADDRESS OF TMP2
TMP1  BSS 2 TMP1-TMP3 ARE WORKING
TMP2  BSS 2 LOCATIONS FOR MCALC
TMP3  BSS 2 TMP3 MUST FOLLOW TMP2
clc3  BSS 2 HOLDS Cl*Cl+C3*C3
END ACALC
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MICMX,L,R 21MX
$CODE=%MCALC::20,REPLACE OBJECT TO DISK

ORG 6000B
ARARRRARRKRRRRRARARR RN KRR KRR RN R AR R AR R ARNRRAA KRR AR K

*
MCALC MICROPROGRAM *
X
THIS MICROPROGRAM IS A SUBSTITUTE FOR THE FOLLOWING*
LOOP IN THE FORTRAN SUBROUTINE CALC:
DO 300 J=1,JJ
J3=J*3
J2=J1-1
Jl=J2~1
Cl=B(J1)*F
C2=B(J2)*B(J2)
C3=C2-F2
C4=(B(J3)*C2)/(C3*C3+C1l*Cl)
C5=C5+C3*C4
C6=C6+Cl*C4
300 CONTINUE

w o« e v ¥
PR S ‘
LR . . f

MCALC IS INVOKED BY FIRST CALLING AN ASSEMBLY
LANGUAGE ROUTINE CALLED ACALC FROM CALC AT THE
POINT WHERE THE ABOVE LOOP RESIDED. ACALC THEN
INVOKES THE MICROPROGRAM WITH THE FOLLOWING
INSTRUCTIONS:

LDX .B PUT B ARRAY ADDR INTO X-REG
Lby .JJ,1 PUT JJ INTO Y FOR LOOP COUNTER
LDA .TMP1l PUT TMPl,TMP2,TMP3
LDA .TMP2 TMP1,TMP2,TMP3 ARE DEFINED AS
"BSS 2". TMP3 MUST IMMEDIATELY
FOLLOW TMPZ2 TO PASS ITS ADDRESS.
MCALl OCT 105620 INVOKE MCALC AT 1ST ENTRY POINT
F BSS 1 ADDR OF F
F2 BSS 2 ADDR OF F2 (F2=F*F)
FDIV OCT 105060 INVOKE FLT PNT DIVIDE ROM ROUTINE*
.ClC3 DEF ClcC3 ARGUMENT FOR FLT PNT DIVIDE
MCAL2 OCT 105621 INVOKE MCALC AT 2ND ENTRY POINT
.C5 BSS 1 OUTPUT PARAMETERS OF MCALC
.C6 BSS 1

% % % % % % % % ¥ % % % % % ¥ % X X ¥ N ¥ ¥ X F ® X ¥ *

*
*
*
*
*
MCALC IS INVOKED TWICE AT TWO DIFFERENT ENTRY *
POINTS. THE REASON FOR THIS IS THAT A FLOATING *
POINT DIVIDE MUST BE PERFORMED IN THE MIDDLE OF *
MCALC, BUT THE DIVIDE ROUTINE WILL NOT FIT IN WCS, *
SO THE ROM ROUTINE IS USED. THIS REQUIRES A RETURN *
TO ACALC TO INVOKE THE ROM ROUTINE. MCALC IS THEN *

®

*

REENTERED TO COMPLETE ITS OPERATION.

*
*
*
*
*
*
*
*
*
*
*
*
x
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
AARRARRRARKRRKAKRARRR AR KRR AR AR hkhhkhhkkhkhhkhkhhkhkhkhhkhkhkk

MPYX EQU $0246 ROM FLT PNT MPYX ROUTINE

FLD EQU $7031 ROM FLT PNT LOAD ROUTINE

PACK EQU $7052 ROM FLT PNT PACK ROUTINE
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START1 JMP MCALC1 GO TO 1ST ENTRY POINT
START?2 JMP MCALC2 GO TO 2ND ENTRY POINT

KRR KRRRRRRRRRR KR RRRA R RRRKARRNRR AR KKRA R RR KRR AR Kk kK

* THE FOLLOWING RETURN TABLE IS USED TO JUMP BACK TO *
* THE MAIN MICROPROGRAM FROM SUBROUTINES FMPY,FADD OR*
* FSUB. NORMAL RETURNS CANNOT BE MADE BECAUSE THE *
* RETURN ADDRESS IS LOST WHEN FMPY,FADD OR FSUB CALL *
* OTHER ROUTINES. THIS JUMP TABLE IS USED AS FOLLOWS:*
* RTNTABLE IS LOCATED AT 6002 AND CONTAINS A JUMP TO *
* THE 1ST LOCATION FOLLOWING THE 1ST CALL TO FMPY.  *
* BEFORE FMPY IS CALLED, THE IR-REG IS LOADED WITH  *
* VALUE 2 IN BITS 0-3. THE RETURN FROM FMPY IS VIA A *
* "JMP J74" USING BITS 4-7 OF THE IR, SO THE RETURN *
* INDEX FOR A FMPY AND A SUBSEQUENT FADD OR FSUB CAN *
* BE LOADED INTO THE IR AT THE SAME TIME. *
LA A RER2 S22 ER SRR 2R R R RS RSRSS RS RXSSRESR R
RTNTABLE JMP RTNPNT1  TABLE OF JUMPS TO
JMP RTNPNT2  RETURN POINTS FROM
JMP RTNPNT3  SUBROUTINE CALLS.
JMP RTNPNT4  BEFORE JUMPING TO A
JMP RTNPNT5  SUBROUTINE THE LOWER 4
JMP RTNPNT6  BITS OF THE RTNTABLE
JMP RTNPNT7  JMP ENTRY ARE LOADED
JMP RTNPNT8  INTO THE IR. THE
JMP RTNPNT9  SUBROUTINE DOES A "JMP
JMP RTNPNT10 J30 RTNTABLE" TO
JMP RTNPNT1l RETURN TO A CALLER.
THE "J30" REPLACES THE
LOWER 4 BITS OF THE
JMP ADDR WITH THE 4 IR
BITS
DEBUG JMP DEBUG DUMMY ENTRY FOR DEBUG
LA EESE RS EEERERERZER2 X2 2R 2R RARSRRRSXREESSR SR KR
* SET UP CALLING PARAMETERS. *
* SCRATCH REGISTERS: JJ --> Y-REG *
* .B --> X-REG *
* .TMP1 --> S4 *
* .TMP2 --> S8 *
* .TMP3 --> S12 *
RRAXRRRRARRKRRRRKNKRRANRRRRR KRR AR KRR Rk Ak kAR RkRkARhhkhkhkk
MCALC1 PASS S P SAVE P IN S
PASS S4 A USE S4 AS POINTER TO TMP1
PASS S8 B USE S8 AS POINTER TO TMP2
INC S12 S8 USE S12 AS POINTER TO TMP3

INC 812 sl2 NOTE TMP3 IS AT TMP2+2

RARRRAKRRRRRRRR KRR T hRARRARRkhkkkhkRkAkhkkkkhhkhkhhhkhhhhhAhkhk

CALCULATE Cl. Cl=GAMMAL(J)*F *

NOTE THAT GAMMAl(J), NU(J), AND RHO(J) ARE ELEMENTS*

OF THE B ARRAY, AND ARE ARRANGED IN THE ARRAY IN *

THAT ORDER. I.E., B(1l)=GAMMAl(l), B(2)=NU(1l), B(3)=*

RHO(1l), B(4)=GAMMAl(2), B(5)=NU(2), B(6)=RHO(2) ...*

B(22)=GAMMALl(8), B(23)=NU(8), AND B(24)=RHO(8). *
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LOoP READ INC M X READ GAMMAl ELEMENT FROM B
INC X X POINT TO 2ND GAMMAl WORD
PASS A TAB PUT 1ST GAMMAl WORD INTO A
READ INC M X READ 2ND GAMMA1l WORD
INC X X POINT TO NU ELEMENT OF B
PASS B TAB PUT 2ND GAMMAl WORD INTO B
READ INC PNM P READ F ADDR. POINT TO .F2
PASS S3 TAB F ADDR INTO S3 FOR MPY
IMM CMLO S1 %374 LO 4 MAP TO "JMP RTNPNT1"
PASS IR Sl
JMP FMPY GAMMAL1(J)*F=Cl RETURN IN A
RTNPNT1 MPCK INC M S4 POINT M AT TMP1l
WRTE PASS TAB A WRITE 1ST Cl WORD TO TMPl
INC S3 54 POINT S3 TO 2ND TMPl WORD
MPCK INC M S3 NOW, SO DOES M
WRTE PASS TAB B WRITE 2ND Cl1 WORD TO TMP2
AR RRRR R IR KRR KRR R AR AR AR R AR KRR RAR AR AR R R kR AR AR
* CALCULATE C2. C2=NU(J)*NU(J) *

Khhkkhhhkhkkhhhkhkhhhhkhkhkhhhhkhkhhhkhkhkhhkkkhkhkhhkhkhkhkdkhkkkkkkkkkk

PASS S3 X NU(J) ADDR INTO S3
READ INC M X READ NU ELEMENT FROM B
INC X X POINT TO 2ND WORD OF NU
PASS A TAB PUT 1ST WORD OF NU INTO A
READ INC M X READ 2ND WORD OF NU
, INC X X POINT TO RHO ELEMENT OF B
i PASS B TAB PUT 2ND WORD OF NU INTO B
\ IMM CMLO S1 %253 LO 4 MAP TO "JMP RTNPNT2"
PASS IR Sl HI 4 MAP TO "JMP RTNPNT3"
JMP FMPY  NU(J)*NU(J) RETURN. IN AB
RTNPNT2 MPCK INC M S8 POINT M AT TMP2
WR'TE PASS TAB A WRITE 1ST C2 WORD TO TMP2

INC S3 s8
MPCK INC M s3 AND M ALSO
WRTE PASS TAB B WRITE 2ND C2 WORD
AR RRRRRRRKRRRRRRRRRRRR R RNk ko k ko kk &

* CALCULATE C3. C3=C2-F2 *
KRARRARRRRRRR KRR AR RRRRRRA KRR RR AR R RRRRRARR AR AR AR R KAk

READ INC PNM P READ .F2. POINT TO FDV INS

POINT S3 TO 2ND TMP2 WORD

Ay~

PASS S3 TAB

PUT F2 ADDR (.F2) INTO S3

JMP FADDSUB C2-F2 RETURNS IN A/B

RTNPNT3 MPCK INC M sl2
WRTE PASS TAB A
INC 83 sl2
MPCK INC M S3

WRTE PASS TAB B

POINT M AT TMP3

WRITE 1ST C3 WORD TO TMP3
S3 POINTS TO TMP3+1l

AND SO DOES M

WRITE 2ND C3 WORD TO TMP3

LA RS2 REE RS2 2 R RRRERX X222 2222222222220 X 2

* CALCULATE Cd4.

C4=(RHO(J)*C2)/(C3*C3+C1l*Cl) *

(2222222 RRRR222 RS2 22222222222 22 2 R 2

READ INC M s8
INC S3 s8

PASS A TAB
READ INC M S3
PASS S3 X

160

READ 1ST WORD OF C2 (TMP2)
S3 POINTS TO 2ND WORD

1ST WORD OF C2 INTO A-REG
READ 2ND WORD

PASS S3 AT RHO ELEMENT OF
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INC X X INC X BY 2 TO POINT AT

xﬁti INC X X NEXT GAMMA
Ve PASS B TAB 2ND WORD OF C2 INTO B-REG
IMM CMLO Sl %371 LO 4 MAP TO "JMP RTNPNT4"
PASS IR S1
JMP FMPY RHO(J)*C2 RETURNS IN A/B
RTNPNT4 MPCK INC M S8 POINT M AT TMP2
WRTE PASS TAB A WRITE 1ST WORD RHO(J)*C2
INC S3 s8 POINT S3 TO 2ND WORD TMP2
MPCK INC M S3 AND M ALSO
' WRTE PASS TAB B WRITE 2ND WORD RHO(J)*C2
& READ INC M sl2 READ 1ST WORD OF C3

. INC s3 sl2 POINT S3 AT 2ND WORD
o PASS A TAB PUT 1ST WORD INTO A-REG

READ INC M s3 READ IN 2ND WORD OF C3
PASS S3 sl2 POINT S3 BACK AT 1ST WORD
PASS B TAB PUT 2ND WORD INTO B-REG
IMM CMLO S1 %370 LO 4 MAP TO "JMP RTNPNT5"
PASS IR Sl
JMP FMPY C3*C3 RETURNS IN A/B
RTNPNT5 INC S3 P POINT S3 AT .ClC3 ADDRESS
READ INC M S3 READ ClC3 ADDRESS
PASS S3 TAB AND PUT INTO S3
MPCK INC M S3 POINT M AT ClcC3
WRTE PASS TAB A WRITE 1ST WORD OF C3*C3
INC S3 s3 POINT S3 AT 2ND WORD ClC3
MPCK INC M S3 AND M ALSO
WRTE PASS TAB B WRITE 2ND WORD OF C3*C3
READ INC M S4 READ IN 1ST WORD OF Cl
INC S3 s4 POINT S3 AT 2ND WORD
PASS A TAB PUT 1ST WORD INTO A-REG
READ INC M S3 READ IN 2ND WORD OF Cl
PASS S3 sS4 POINT S3 BACK AT 1ST WORD
PASS B TAB PUT 2ND WORD INTO B-REG
IMM CMLO S1 %147 LO 4 MAP TO "JMP RTNPNT6"
PASS IR sl HI 4 MAP TO "JMP RTNPNT7"
JMP FMPY Cl*Cl RETURNS IN A/B
RTNPNT6 INC S3 p POINT S3 AT .ClC3 ADDRESS
READ INC M s3 READ ClC3 ADDRESS
STFL PASS S3 TAB INTO S3. STFL FOR NEXT ADD
JMP FADDSUB Cl1l*Cl+C3*C3 RETURNS IN AB
RTNPNT7 INC S3 P POINT S3 AT .ClC3 ADDRESS
READ INC M s3 READ ClC3 ADDRESS
PASS S3 TAB AND PUT INTO S3
MPCK INC M s3 AND INTO M
WRTE PASS TAB A WRITE 1ST WORD Cl*Cl+C3*C3
INC s3 s3 POINT S3 AT WORD 2 OF ClC3
MPCK INC M s3 AND M ALSO
WRTE PASS TAB B WRITE 2ND WORD Cl*Cl+C3*C3
READ INC M s8 READ 1ST WORD RHO(J)*C2
INC 83 s8 POINT AT 2ND WORD
PASS A TAB PUT 1ST WORD INTO A-REG
READ INC M S3 READ 2ND WORD
RTND PASS B TAB PUT 2ND WORD INTO B
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AT THIS POINT EVERYTHING IS SET UP FOR THE DIVIDE *
OF RHO(J)*C2 BY Cl*Cl+C3*C3. RETURN TO THE ASSEMBLY*
LANGUAGE ROUTINE TO INVOKE THE FLOATING POINT *
DIVIDE ROUTINE. RETURN TO MICROCODE AT MCALCZ2 WITH *

* THE RESULT IN A/B REGS AND OTHER REGS INTACT. *
AR RRRRRRRRRKRERKI AN TARRIARIRRA AR ARARRR AR AR R AR AR AR

MCALC2 MPCK INC

M

S8

WRTE PASS TAB A

INC
MPCK INC

Ss3
M

S8
s3

WRTE PASS TAB B
AARAKRRKNR AR AR R RN R AR R AR R AR R AR R AR Rk Ak AR AR AR Ak Ak hk ke k

* CALCULATE C5. C5=C5+C3*C4

POINT M AT 1ST WORD TMP2

1ST WORD OF C4 INTO TMP2

POINT S3 AT 2ND TMP2 WORD
AND M ALSO

2ND WORD OF C4 INTO TMP2

*

Khkhhkkhhhhkkhkhhhhkkhhkhkhkhkhhhkhhkhkhkkhkhkhkhkhkhkhhhkhkkkhkhkhkhkhhhhn

PASS
IMM CMLO
PASS

JMP
RTNPNTS8 MPCK INC
STFL PASS

JMP

RTNPNT9 READ INC
PASS
MPCK INC
WRTE PASS
INC
MPCK INC
WRTE PASS

S3
sl
IR

M
S3

PNM
S3
M
TAB
S3
M
TAB

Sl2
$105
sl
FMPY
P
TAB

ADDRESS OF C3 INTO S3

LO 4 MAP TO "JMP RTNPNTS8"
HI 4 MAP TO "JMP RTNPNT9"
C3*C4 RETURNS IN A/B

READ C5 ADDRESS

INTO S3. STFL FOR NEXT ADD

FADDSUB C5+C3*C4 RETURNS IN A/B

P
TAB
Ss3
A
S3
S3
B

GET C5 ADDR. POINT C6 ADDR
AND PUT INTO S3

C5 ADDRESS INTO M

1ST WORD OF CS5 STORED
POINT TO 2ND WORD

AND M ALSO

2ND WORD OF C5 STORED

kkhhhkkhkhkhkkhkhhkhhkhhkhhkhkhhkhkkkhkhkhkhkhhkhkhhkhkhhkkkhhhkhhhkhhhkkk

* CALCULATE C6. C6=C6+Cl*C4

*

kkkkhkhkhkhkhkhkhkhkkhkhhhhhhhhhhhhhhkhhhhkhhkhrhkkkhkkhkhkhkhhkhkhkhhhhk

READ INC
INC
PASS
READ INC
PASS
PASS
IMM CMLO
PASS
JMP
RTNPNT10 READ INC
STFL PASS
JMP
RTNPNT1l READ MPCK INC
PASS
INC
WRTE PASS
INC
MPCK INC
WRTE PASS
DEC
JMP CNDX TBZ
PASS

M
S3
A
M
Ss3
B
sl
IR

M
s3

PNM
s3
M
TAB
S3
M
TAB
Y

P

sS4
S4
TAB
S3
S8
TAB
$043
sl
FMPY
P
TAB

READ IN 1ST WORD OF C1
POINT S3 AT 2ND WORD OF Cl
1ST WORD OF Cl INTO A-REG
READ IN 2ND WORD OF Cl
POINT S3 AT C4

2ND WORD OF Cl INTO B-REG
LO 4 MAP TO "JMP RTNPNT10"
HI 4 MAP TO "JMP RTNPNTI1L1"
Cl*C4 RETURNS IN A/B

READ C6 ADDRESS

INTO S3. STFL FOR NEXT ADD

FADDSUB C6+Cl*C4 RETURNS IN A/B

P

TAB

S3

A

S3

s3

B

Y

RTNMAC

S
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GET C6 ADR. POINT TO NEXT
PUT C6 ADDRESS INTO S3
AND INTO M

1ST WORD OF C6 STORED
POINT TO 2ND WORD

M ALSO

2ND WORD OF C6 STORED
DECREMENT LOOP COUNT

IF DONE, RETURN

POINT P AT .F & DO AGAIN

- - e T . . . v .
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JMP LooP

RTNMAC RTN RETURN TO ACALC

RARRARRRARRRRRK KRR KRR RRR AR R R ARRARAR AR AR AR AR R A R AR Ak &
* FLOATING POINT MULTIPLY ROUTINE. THIS ROUTINE IS *
* TAKEN FROM APPENDIX E OF THE HP MICROPROGRAMMING *
* 21MX COMPUTERS OPERATING AND REFERENCE MANUAL. THIS*
* ROUTINE ALSO RESIDES IN CONTROL STORE ROM, BUT IT *
* IS NECESSARY TO REPRODUCE IT IN WCS TO AVOID THE *
* PROBLEM OF LEVELED SUBROUTINE CALLS IN THE M-SERIES*
* COMPUTER. FMPY HAS BEEN MODIFIED SLIGHTLY TO HANDLE*
* THE ARGUMENT ADDRESS IN REGISTER S3 RATHER THAN P. *
* THE RETURN TO THE CALLING ROUTINE HAS BEEN MODIFIED¥*
* TO A "JMP J30 RTNTABLE" AS DISCUSSED AT "RTNTABLE".*
*
*

ALSO, INDIRECT ADDRESSING IS NOT SUPPORTED. *
LR I T R T T e

FMPY READ INC M 83 READ 1ST PARAMETER WORD
JSB FLD STORE ARGS IN SCRATCH REGS
INC S9 S9
PASS L S5 FORM EXPl+EXP2+1
ADD S9 S9 AND SAVE IN S9
Rl PASS A S10 FORM (WORD1l LOBITS)/2 IN A
PASS S2 87 PASS WORD2 HIBITS INTO S2
JSB MPYX JMP TO MPY SUB & RTN WITH
PASS S5 B HIBITS IN B & SAVE IN S5
PASS S2 Sll PASS WORD1 HIBITS INTO S2
PASS S1l1 a LOBITS INTO A. SAVE INTO S
R1 PASS A S6 FORM (WORD2 LOBITS)/2 IN A
JSB MPYX JMP TO MPY SUB & RTN WITH
PASS L A LOBITS IN A & PASS INTO L
ADD A S1l1 ADD BOTH LOBITS. CHK FOR C
JMP CNDX COUT RJS *+2 (ELSE TRUNCATE DIGITS)
INC B B IF COUT, BUMP HIBITS
PASS L B ADD HIBITS & SAVE IN Sll
ADD S11 S5
PASS A s7 PASS WORD2 HIBITS INTO A
JSB MPYX JMP TO MPY SUB & RTN WITH
R1 PASS A A LOBITS IN A. SAVE LOBITS/2
COV PASS L A ADD LOBITS/2 TO HIBITS SUM
ENV L1 ADD A  Ssll SHIFT L1 TO REORIENT
JMP CNDX AL15 RJS *+3 CHECK FOR CARRY INTO OR
JMP CNDX OVFL *+4 BORROW FROM HIBITS &
DEC B B ADJUST ACCORDINGLY
JSB PACK
JMP J30 RTNTABLE RTN TO MAIN MICROPROGRAM
INC B B CAN'T OVERFLOW FROM HIBITS
JSB PACK
JMP J30 RTNTABLE RTN TO MAIN MICROPROGRAM

AR EEER RS RRRRRRERARRRRRRRRRRRRRRRXERRERES RS X X

* FLOATING POINT ADD SUBTRACT ROUTINE. THIS ROUTINE *

* IS TAKEN FROM APPENDIX E OF THE HP MICROPROGRAMMING*

* 21MX COMPUTERS OPERATING AND REFERENCE MANUAL. IT *

* ALSO RESIDES IN CONTROL STORE ROM BUT IS DUPLICATED*

* IN WCS TO AVOID THE PROBLEM OF LEVELED SUBROUTINE *
163
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CALLS IN THE M-SERIES. FADD HAS BEEN MODIFIED TO
ALLOW A PARAMETER ADDRESS IN SCRATCH REGISTER S3
RATHER THAN THE P REGISTER. INDIRECT ADDRESSING IS
NOT USED, SO THE CALL TO "INDIRECT" IS OMITTED.

* ¥ % *

FREE S8 FOR USE IN THE MAIN PROGRAM. THE RETURN TO *

THE CALLING ROUTINE HAS ALSO BEEN

MODIFIED TO A *

"JMP J74 RTNTABLE" AS DISCUSSED AT "RTNTABLE". *
AR AR KRR KRR ARRRRRRAR KRR RN R AR RN AR RN R R AR R ARk Kk

*
*
*
*
* ALSO, SCRATCH REGISTER S2 IS USED IN PLACE OF S8 TO¥*
*
*
*
*

FADD READ INC M S3 READ 1ST PARAMETER WORD
JSB FLD UNPACK WORDS INTO SCR REGS
PASS B s7 CHECK FOR WORD2=0
JMP CNDX TBZ RJS *+2 IF NOT, CONTINUE
IMM LOW S5 %200 IF SO, MAKE EXP MOST NEG
PASS sll CHECK FOR WORD1=0
JMP CNDX TBZ RJS *+2 IF NOT, CONTINUE
IMM LOW S9 %200 IF SO, MAKE EXP MOST NEG
JMP CNDX FLAG DIFR IF DOING ADD,SKIP AHEAD
CMPS B B FORM 2-COMP OF HIBITS IN B
CMPS S6 S6 FORM 2-COMP OF LOBITS
INC S6 S6 OF WORD2
JMP CNDX COUT RJS DIFR IF COUT OCCURS
INC B B BUMP HIBITS
JMP CNDX ALl5 RJS DIFR CHECK SIGN IF POS,JUMP
L1  PASS B IF NEG,CHECK FOR MOST
JMP CNDX TBZ RJS DIFR NEG # (100...)
Rl PASS B B IF SO, SHIFT BACK (010...)
INC S5 S5 & BUMP EXP
DIFR PASS A S6
PAS L S5 FIND DIFF IN EXPS
CLFL SUB S2 S9 & STORE IN S2, FLAG=0
JMP CNDX TBZ ADD?2 IF DIFF=0, JMP TO ADD STEP
JMP CNDX AL1S RVRS IF NEG, WORD2>WORDL
CMPS S2 S2 FORM -DIFF
INC S2 82 & STORE -DIFF IN S2
JMP SWAMPCHK
RVRS PASS L B HOLD B IN L
PASS B sll WORD1<WORD2, FILL IN B,A
PASS A sl0 WITH S11,S10
PASL Sl11 ALSO FILL S11,S10,S9
PASS S10 S6 WITH B,S6,S5
PASS S9 S5
SWAMPCHK IMM IOW L $350 FORM -30B8 IN L
SUB s2 IF -DIFF>-31,RTN WITH
* LARGER #
JMP CNDX AL1S5 ouT JMP TO RESTORE A,B
SHIFT ARS RI1 PASS B B NOW START SHIFT LOOP
INC S2 82 INC COUNTER
JMP CNDX TBZ RJS SHIFT LOOP UNTIL DONE
ADD2 COV PASS L s10 PASS LOBITS INTO L
ADD A A ADD & CHECK FOR COUT
JMP CNDX COUT RJS *+3 IF NOT, JUMP
IMM HIGH L $0 CLR L(15) FOR OVFL
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& e

ENV

ENV
JMP
JMP

LWF
LWF

PKSUB JSB

ouT
*

JMP

JSB
JMP
END

CLFL

CNDX
CNDX
STFL
R1
Rl

J74

J74

INC
PASS
ADD
OVFL
aLl5

PASS
PASS

INC

PASS

PASS

-

B

RJS

. B - .t . . . N
LIPSO P EUNS. T B S TS [ S SN D N S Y

B IF SO,INC HIBITS & ENABLE
OVERFLOW

S11 FLAG=0

B ADD HIBITS & ENABLE OVFL

PKSUB IF NO OVFL, RETURN
*+2 OVFL IMPLIES SIGN CHANGE
SO FLAG=U IF AL15=0

B DO FULL WORD SHIFT

A USING FLAG REG TO INJECT
SIGN

S9 BUMP EXP

PACK REPACK A,B REGS

RTNTABLE RTN TO MAIN MICROPROGRAM

sl1 PASS MUCH LARGER WORD INTO
B,A

S10

PACK .

RTNTABLE RTN TO MAIN MICROPROGRAM
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